In this section, we prove some coupled coincidence point and common coupled fixed point results in ordered cone b-metric spaces.
Theorem 3.1
Let
\((X,\sqsubseteq )\) (be a partially ordered set and X, d be a cone b-metric space with the coefficient) \(s\ge 1\)
relative to a solid cone
P. Let
\(F:X^{2}\longrightarrow X\)
and
\(g:X\longrightarrow X\)
be two mappings such that F has the mixed g-monotone property on
X and suppose that there exist nonnegative constants
\(a_i\in [0,1),i=1,2,\ldots , 10\)
with
\((s+1)(a_1+a_2+a_3+a_4)+s(s+1)(a_5+a_6+a_7+a_8)+2s(a_9+a_{10})<2\)
and
\(\sum _{i=1}^{10}a_i<1\)
such that the following contractive condition holds
$$\begin{aligned} d\big (F(x,y),F(u,v)\big )&\preceq \big [a_1d(gx,F(x,y)) +a_2d(gy,F(y,x))\big ]\\&\quad +\big [a_3d(gu,F(u,v)) +a_4d(gv,F(v,u))\big ]\\&\quad +\big [a_5d(gx,F(u,v))+a_6d(gy,F(v,u))\big ]\\&\quad +\big [a_7d(gu,F(x,y))+a_8d(gv,F(y,x))\big ]\\&\quad +\big [a_9d(gx,gu)+a_{10}d(gy,gv)\big ], \end{aligned}$$
for all
\((x,y),(u,v)\in X^2\)
with (\(gu\sqsubseteq gx\)
and
\(gv\sqsupseteq gy\)) or (\(gx\sqsubseteq gu\)
and
\(gy\sqsupseteq gv\)). Assume that F and
g satisfy the following conditions:
-
1.
\(F(X^{2})\subseteq g(X)\),
-
2.
g(X) is a complete subspace of
X.
Also, suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(gx_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq gy_0\), then F and g have a coupled coincidence point \((x^{*},y^{*})\in X^{2}\).
Proof
Let \(x_{0},y_{0}\in X\) such that \(gx_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq gy_0\). Since \(F(X^{2})\subseteq g(X)\) we can Choose \(x_{1},y_{1}\in X\) such that \(gx_{1}=F(x_{0},y_{0}), gy_{1}=F(y_{0},x_{0})\). Again Since \(F(X^{2})\subseteq g(X)\) we can Choose \(x_{2},y_{2}\in X\) such that \(gx_{2}=F(x_{1},y_{1}), gy_{2}=F(y_{1},x_{1})\). Since F has the mixed g-monotone property, we have \(gx_0\sqsubseteq gx_1\sqsubseteq gx_2\) and \(gy_2\sqsubseteq gy_1\sqsubseteq gy_0\). Continuing this process, we can construct two sequences \(\{x_{n}\}, \{y_{n}\}\) in X such that
$$gx_{n}=F(x_{n-1}, y_{n-1})\sqsubseteq gx_{n+1}=F(x_{n}, y_{n})$$
and
$$gy_{n+1}=F(y_{n},x_{n})\sqsubseteq gy_{n}=F(y_{n-1},x_{n-1}).$$
Then we have:
$$\begin{aligned} d(gx_{n},gx_{n+1})&=d\big (F(x_{n-1},y_{n-1}),F(x_{n},y_{n})\big ) \\&\preceq \big [a_1d(gx_{n-1},F(x_{n-1},y_{n-1})+a_2d(gy_{n-1},F(y_{n-1},x_{n-1}))\big ]\\&\quad +\big [a_3d(gx_{n},F(x_{n},y_{n}))+a_4d(gy_{n},F(y_{n},x_{n}))\big ]\\&\quad +\big [a_5d(gx_{n-1},F(x_{n},y_{n}))+a_6d(gy_{n-1},F(y_{n},x_{n}))\big ]\\&\quad +\big [a_7d(gx_{n},F(x_{n-1},y_{n-1}))+a_8d(gy_{n},F(y_{n-1},x_{n-1}))\big ]\\&\quad +\big [a_9d(gx_{n-1},gx_{n})+a_{10}d(gy_{n-1},gy_{n})\big ]. \end{aligned}$$
So that,
$$\begin{aligned} d(gx_{n},gx_{n+1})&=d\big (F(x_{n-1},y_{n-1}),F(x_{n},y_{n})\big ) \\&\preceq \big [a_1d(gx_{n-1},gx_{n})+a_2d(gy_{n-1},gy_{n})\big ]\\&\quad +\big [a_3d(gx_{n},gx_{n+1})+a_4d(gy_{n},gy_{n+1})\big ]\\&\quad +\big [a_5d(gx_{n-1},gx_{n+1})+a_6d(gy_{n-1},gy_{n+1})\big ]\\&\quad +\big [a_7d(gx_{n},gx_{n})+a_8d(gy_{n},gy_{n})\big ]\\&\quad +\big [a_9d(gx_{n-1},gx_{n})+a_{10}d(gy_{n-1},gy_{n})\big ]\\&\preceq \big [a_1d(gx_{n-1},gx_{n})+a_2d(gy_{n-1},gy_{n})\big ]\\&\quad +\big [a_3d(gx_{n},gx_{n+1})+a_4d(gy_{n},gy_{n+1})\big ]\\&\quad +\big [sa_5(d(gx_{n-1},gx_{n})+d(gx_{n},gx_{n+1}))\\&\quad +sa_6(d(gy_{n-1},gy_{n})+d(gy_{n},gy_{n+1}))\big ]\\&\quad +\big [a_9d(gx_{n-1},gx_{n})+a_{10}d(gy_{n-1},gy_{n})\big ]. \end{aligned}$$
Hence
$$\begin{aligned} d(gx_{n},gx_{n+1})&\preceq \big [(a_1+a_5s+a_9)d(gx_{n-1},gx_{n})+(a_2+a_6s+a_{10})d(gy_{n-1},gy_{n})\big ] \\&\quad +\big [(a_3+a_5s)d(gx_{n},gx_{n+1})+(a_4+a_6s)d(gy_{n},gy_{n+1})\big ]. \end{aligned}$$
(3.1)
Similarly, we can prove that
$$\begin{aligned} d(gy_{n},gy_{n+1})&\preceq \big [(a_1+sa_5+a_9)d(gy_{n-1},gy_{n})+(a_2+sa_6+a_{10})d(gx_{n-1},gx_{n})\big ] \\&\quad +\big [(a_3+sa_5)d(gy_{n},gy_{n+1})+(a_4+sa_6)d(gx_{n},gx_{n+1})\big ]. \end{aligned}$$
(3.2)
Put,
$$d_n= d(gx_{n},gx_{n+1})+ d(gy_{n},gy_{n+1}).$$
Adding inequalities (3.1) and (3.2), one can assert that
$$\begin{aligned} d_n&\preceq (a_1+a_2+sa_5+sa_6+a_9+a_{10})d_{n-1} \\&\quad +(a_3+a_4+sa_5+sa_6)d_n. \end{aligned}$$
(3.3)
On the other hand, we have
$$\begin{aligned} d(gx_{n+1},gx_{n})&=d\big (F(x_{n},y_{n}),F(x_{n-1},y_{n-1})\big ) \\&\preceq \big [a_1d(gx_{n},F(x_{n},y_{n}))+a_2d(gy_{n},F(y_{n},x_{n}))\big ]\\&\quad + \big [a_3d(gx_{n-1},F(x_{n-1},y_{n-1})+a_4d(gy_{n-1},F(y_{n-1},x_{n-1}))\big ]\\&\quad +\big [a_5d(gx_{n},F(x_{n-1},y_{n-1}))+a_6d(gy_{n},F(y_{n-1},x_{n-1}))\big ]\\&\quad +\big [a_7d(gx_{n-1},F(x_{n},y_{n}))+a_8d(gy_{n-1},F(y_{n},x_{n}))\big ]\\&\quad +\big [a_9d(gx_{n},gx_{n-1})+a_{10}d(gy_{n},gy_{n-1})\big ]. \end{aligned}$$
So that,
$$\begin{aligned} d(gx_{n+1},gx_{n})&=d\big (F(x_{n},y_{n}),F(x_{n-1},y_{n-1})\big ) \\&\preceq \big [a_1d(gx_{n},gx_{n+1})+a_2d(gy_{n},gy_{n+1})\big ]\\&\quad + \big [a_3d(gx_{n-1},gx_{n})+a_4d(gy_{n-1},gy_{n})\big ]\\&\quad +\big [a_5d(gx_{n},gx_{n})+a_6d(gy_{n},gy_{n})\big ]\\&\quad +\big [a_7d(gx_{n-1},gx_{n+1})+a_8d(gy_{n-1},gy_{n+1})\big ]\\&\quad +\big [a_9d(gx_{n},gx_{n-1})+a_{10}d(gy_{n},gy_{n-1})\big ]\\&\preceq \big [a_1d(gx_{n},gx_{n+1})+a_2d(gy_{n},gy_{n+1})\big ]\\&\quad +\big [a_3d(gx_{n-1},gx_{n})+a_4d(gy_{n-1},gy_{n})\big ]\\&\quad +\big [sa_7(d(gx_{n-1},gx_{n})+d(gx_{n},gx_{n+1}))\\&\quad +sa_8(d(gy_{n-1},gy_{n})+d(gy_{n},gy_{n+1}))\big ]\\&\quad +\big [a_9d(gx_{n-1},gx_{n})+a_{10}d(gy_{n-1},gy_{n})\big ]. \end{aligned}$$
Hence
$$\begin{aligned} d(gx_{n+1},gx_{n})&\preceq \big [(a_3+sa_7+a_9)d(gx_{n-1},gx_{n})+(a_4+sa_8+a_{10})d(gy_{n-1},gy_{n})\big ] \\&\quad +\big [(a_1+sa_7)d(gx_{n},gx_{n+1})+(a_2+sa_8)d(gy_{n},gy_{n+1})\big ]. \end{aligned}$$
(3.4)
Similarly
$$\begin{aligned} d(gy_{n+1},gy_{n})&\preceq \big [(a_3+sa_7+a_9)d(gy_{n-1},gy_{n})+(a_4+sa_8+a_{10})d(gx_{n-1},gx_{n})\big ] \\&\quad +\big [(a_1+sa_7)d(gy_{n},gy_{n+1})+(a_2+sa_8)d(gx_{n},gx_{n+1})\big ]. \end{aligned}$$
(3.5)
Adding inequalities (3.4) and (3.5), one can assert that
$$\begin{aligned} d_n&\preceq (a_3+a_4+sa_7+sa_8+a_9+a_{10})d_{n-1} \\&\quad +(a_1+a_2+sa_7+sa_8)d_n. \end{aligned}$$
(3.6)
Finally, from (3.3) and (3.6), we have
$$\begin{aligned} 2d_n&\preceq (a_1+a_2+a_3+a_4+sa_5+sa_6+sa_7+sa_8+2(a_9+a_{10}))d_{n-1}\\&\quad +(a_1+a_2+a_3+a_4+sa_5+sa_6+sa_7+sa_8)d_n, \end{aligned}$$
that is
where \(h=\frac{\big (a_1+a_2+a_3+a_4+sa_5+sa_6+sa_7+sa_8+2(a_9+a_{10})\big )}{2-(a_1+a_2+a_3+a_4+sa_5+sa_6+sa_7+sa_8)}<\frac{1}{s}\).
Note that, \(h=\frac{\big (a_1+a_2+a_3+a_4+sa_5+sa_6+sa_7+sa_8+2(a_9+a_{10})\big )}{2-(a_1+a_2+a_3+a_4+sa_5+sa_6+sa_7+sa_8)}<\frac{1}{s}\) equivalently \((s+1)(a_1+a_2+a_3+a_4)+s(s+1)(a_5+a_6+a_7+a_8)+2s(a_9+a_{10})<2\).
Consequently, we have
$$\begin{aligned} d_n&\preceq h d_{n-1} \\&\preceq h^{2} d_{n-2} \\&\preceq h^{3} d_{n-3} \\&\quad . \\&\quad . \\&\quad . \\&\preceq h^{n} d_{0}. \end{aligned}$$
(3.7)
Let \(m>n\ge 1\). It follows that
$$d(gx_{n},gx_{m})\preceq sd(gx_{n},gx_{n+1})+s^{2}d(gx_{n+1},gx_{n+2})+\cdots +s^{m-n}d(gx_{m-1},gx_{m}),$$
and
$$d(gy_{n},gy_{m})\preceq sd(gy_{n},gy_{n+1})+s^{2}d(gy_{n+1},gy_{n+2})+\cdots +s^{m-n}d(gy_{m-1},gy_{m}).$$
Now, (3.7) and \(sh<1\) imply that
$$\begin{aligned} d(gx_{n},gx_{m})+d(gy_{n},gy_{m})\preceq & {} sd_{n}+s^{2}d_{n+1}+\cdots +s^{m-n}d_{m-1} \\\preceq & {} sh^{n}d_{0}+s^{2}h^{n+1}d_{0}+\cdots +s^{m-n}h^{m-1}d_{0} \\= & {} sh^{n}(1+sh+(sh)^{2}+\cdots +(sh)^{m-n-1})d_{0} \\\preceq & {} \frac{sh^{n}}{1-sh}d_{0}\quad \rightarrow \theta \quad {\text {as}}\quad n\rightarrow \infty . \end{aligned}$$
(3.8)
According to Lemma 2.3 (2), and for any \(c\in E\) with \(c\gg \theta\), there exists \(N_0\in {\mathbb {N}}\) such that for any \(n>N_0\), \(\frac{h^{n}}{1-h}d_{0}\ll c\). Furthermore, from (3.8) and for any \(m>n>N_0\), Lemma 2.3 (3) shows that
$$d(gx_{n},gx_{m})+d(gy_{n},gy_{m})\ll c,$$
which implies that
$$d(gx_{n},gx_{m})\ll c,$$
and
$$d(gy_{n},gy_{m})\ll c.$$
Hence, by Definition 2.2 (2), \(\{gx_n\}\) and \(\{gy_n\}\) are Cauchy sequences in g(X). Since g(X) is complete, there exists \(x^{*}\) and \(y^{*}\in X\) such that \(gx_{n}\longrightarrow gx^{*}\) and \(gy_{n}\longrightarrow gy^{*}\) as \(n\longrightarrow \infty\). Since \(\{gx_n\}\)is nondecreasing and \(\{gy_n\}\) is nonincreasing, using the properties (i), (ii) of X, we have
$$gx_{n}\sqsubseteq gx^{*} \quad and \quad gy^{*}\sqsubseteq gy_{n}.$$
Now, we can apply the contractive condition
$$\begin{aligned} d(F(x^{*},y^{*}),gx^{*})&\preceq s(d(F(x^{*},y^{*}),gx_{n+1})+d(gx_{n+1},gx^{*})) \\&=s(d(F(x^{*},y^{*}),F(x_{n},y_{n}))+d(gx_{n+1},gx^{*}))\\&\preceq s\big [a_1d(gx^{*},F(x^{*},y^{*})+a_2d(gy^{*},F(y^{*},x^{*}))\big ]\\&\quad +s\big [a_3d(gx_{n},F(x_{n},y_{n}))+a_4d(gy_{n},F(y_{n},x_{n}))\big ]\\&\quad +s\big [a_5d(gx^{*},F(x_{n},y_{n}))+a_6d(gy^{*},F(y_{n},x_{n}))\big ]\\&\quad +s\big [a_7d(gx_{n},F(x^{*},y^{*}))+a_8d(gy_{n},F(y^{*},x^{*}))\big ]\\&\quad +s\big [a_9d(gx^{*},gx_{n})+a_{10}d(gy^{*},gy_{n})\big ]+sd(gx_{n+1},gx^{*})\\&\preceq s\big [a_1d(F(x^{*},y^{*}),gx^{*})+a_2d(F(y^{*},x^{*}),gy^{*})\big ]\\&\quad +s\big [sa_3d(gx_{n},gx^{*})+sa_3d(gx^{*},gx_{n+1})\\&\quad +sa_4d(gy_{n},gy^{*})+sa_4d(gy^{*},gy_{n+1})\big ]\\&\quad +s\big [a_5d(gx^{*},gx_{n+1})+a_6d(gy^{*},gy_{n+1})\big ]\\&\quad +s\big [sa_7d(gx_{n},gx^{*})+sa_7d(gx^{*},F(x^{*},y^{*}))\\&\quad +sa_8d(gy_{n},gy^{*})+sa_8d(gy^{*},F(y^{*},x^{*}))\big ]\\&\quad +s\big [a_9d(gx^{*},gx_{n})+a_{10}d(gy^{*},gy_{n})\big ]+sd(gx_{n+1},gx^{*})\\&=s\big [a_1d(F(x^{*},y^{*}),gx^{*})+a_2d(F(y^{*},x^{*}),gy^{*})\big ]\\&\quad +s\big [sa_3d(gx_{n},gx^{*})+sa_3d(gx_{n+1},gx^{*})\\&\quad +sa_4d(gy_{n},gy^{*})+sa_4d(gy_{n+1},gy^{*})\big ]\\&\quad +s\big [a_5d(gx_{n+1},gx^{*})+a_6d(gy_{n+1},gy^{*})\big ]\\&\quad +s\big [sa_7d(gx_{n},gx^{*})+sa_7d(F(x^{*},y^{*}),gx^{*})\\&\quad +sa_8d(gy_{n},gy^{*})+sa_8d(F(y^{*},x^{*}),gy^{*})\big ]\\&\quad +s\big [a_9d(gx_{n},gx^{*})+a_{10}d(gy_{n},gy^{*})\big ]+sd(gx_{n+1},gx^{*}). \end{aligned}$$
Hence,
$$\begin{aligned} d(F(x^{*},y^{*}),gx^{*})&\preceq (sa_1+s^{2}a_7)d(F(x^{*},y^{*}),gx^{*})+(a_2+s^{2}a_8)d(F(y^{*},x^{*}),gy^{*})\\&\quad +(s^{2}a_3+s^{2}a_7+sa_9)d(gx_{n},gx^{*})+(s^{2}a_3+sa_5+s)d(gx_{n+1},gx^{*})\\&\quad +(s^{2}a_4+s^{2}a_8+sa_{10})d(gy_{n},gy^{*})+(s^{2}a_4+sa_6)d(gy_{n+1},gy^{*}). \end{aligned}$$
Similarly
$$\begin{aligned} d(F(y^{*},x^{*}),gy^{*})&\preceq (sa_1+s^{2}a_7)d(F(y^{*},x^{*}),gy^{*})+(a_2+s^{2}a_8)d(F(x^{*},y^{*}),gx^{*})\\&\quad +(s^{2}a_3+s^{2}a_7+sa_9)d(gy_{n},gy^{*})+(s^{2}a_3+sa_5+s)d(gy_{n+1},gy^{*})\\&\quad +(s^{2}a_4+s^{2}a_8+sa_{10})d(gx_{n},gx^{*})+(s^{2}a_4+sa_6)d(gx_{n+1},gx^{*}). \end{aligned}$$
Put
$$\tau =d(F(x^{*},y^{*}),gx^{*})+d(F(y^{*},x^{*}),gy^{*}).$$
Adding above inequalities, we get
$$\begin{aligned} \tau&\preceq (sa_1+s^{2}a_7+a_2+s^{2}a_8)\tau \\&\quad +(s^{2}a_3+s^{2}a_7+sa_9+s^{2}a_4+s^{2}a_8+sa_{10})d(gx_{n},gx^{*})\\&\quad +(s^{2}a_3+s^{2}a_7+sa_9+s^{2}a_4+s^{2}a_8+sa_{10})d(gy_{n},gy^{*})\\&\quad +(s^{2}a_3+sa_5+s+s^{2}a_4+sa_6)d(gx_{n+1},gx^{*})\\&\quad +(s^{2}a_3+sa_5+s+s^{2}a_4+sa_6)d(gy_{n+1},gy^{*}). \end{aligned}$$
Then,
$$\begin{aligned} \tau&\preceq \frac{A_2}{1-A_1}d(gx_{n},gx^{*})+\frac{A_2}{1-A_1}d(gy_{n},gy^{*})\\&\quad +\frac{A_3}{1-A_1}d(gx_{n+1},gx^{*})+\frac{A_3}{1-A_1}d(gy_{n+1},gy^{*}), \end{aligned}$$
where \(A_1=sa_1+s^{2}a_7+a_2+s^{2}a_8\), \(A_2=s^{2}a_3+s^{2}a_7+sa_9+s^{2}a_4+s^{2}a_8+sa_{10}\) and \(A_3=s^{2}a_3+sa_5+s+s^{2}a_4+sa_6\). Since \(gx_{n}\longrightarrow gx^{*}\) and \(gy_{n}\longrightarrow gy^{*}\) as \(n\longrightarrow \infty\), then by Definition 2.2 (1) and for \(c\gg \theta\) there exists \(N_0\in {\mathbb {N}}\) such that for all \(n>N_0\), \(d(gx_{n},gx^{*})\ll c\frac{1-A_1}{4A_2}\), \(d(gy_{n},gy^{*})\ll c\frac{1-A_1}{4A_2}\), \(d(gx_{n+1},gx^{*})\ll c\frac{1-A_1}{4A_3}\) and \(d(gy_{n+1},gy^{*})\ll c\frac{1-A_1}{4A_3}\). Hence,
$$\begin{aligned} \tau&\preceq \frac{A_2}{1-A_1}d(gx_{n},gx^{*})+\frac{A_2}{1-A_1}d(gy_{n},gy^{*})\\&\quad +\frac{A_3}{1-A_1}d(gx_{n+1},gx^{*})+\frac{A_3}{1-A_1}d(gy_{n+1},gy^{*})\\&\ll c\frac{1-A_1}{4A_2}\frac{A_2}{1-A_1}+c\frac{1-A_1}{4A_2}\frac{A_2}{1-A_1}+c\frac{1-A_1}{4A_3}\frac{A_3}{1-A_1}+c\frac{1-A_1}{4A_3}\frac{A_3}{1-A_1}\\&=c. \end{aligned}$$
Now, according to Lemma 2.3 (4) it follows that \(\tau =\theta\), that is, \(d(F(x^{*},y^{*}),gx^{*})+d(F(y^{*},x^{*}),gy^{*})=\theta\), which implies that \(d(F(x^{*},y^{*}),gx^{*})=\theta\) and \(d(F(y^{*},x^{*}),gy^{*})=\theta\). Hence, \(gx^{*}=F(x^{*},y^{*})\) and \(gy^{*}=F(y^{*},x^{*})\). Therefore \((x^{*},y^{*})\) is a coupled coincidence point of F and g. \(\square\)
From Theorem 3.1, we have the following corollaries.
Corollary 3.2
Let \((X,\sqsubseteq )\) (be a partially ordered set and X, d be a cone b-metric space with the coefficient) \(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
and
\(g:X\longrightarrow X\)
be two mappings and suppose that there exist nonnegative constants
\(k,l\in (0,1]\)
with
\(k+l<\frac{1}{s}\)
such that the following contractive condition holds for all
\(x,y,u,v\in X\):
$$d\big (F(x,y),F(u,v)\big )\preceq kd(gx,gu)+ld(gy,gv),$$
for all
\((x,y),(u,v)\in X^2\)
with (\(gu\sqsubseteq gx\)
and
\(gv\sqsupseteq gy\)) or (\(gx\sqsubseteq gu\)
and
\(gy\sqsupseteq gv\)). Assume that F and
g satisfy the following conditions:
-
1.
\(F(X^{2})\subseteq g(X)\),
-
2.
g(X) is a complete subspace of X.
Also, suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(gx_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq gy_0\), then F and g have a coupled coincidence point \((x^{*},y^{*})\in X^{2}\).
Corollary 3.3
Let
\((X,\sqsubseteq )\)
be a partially ordered set and (X, d) be a cone b-metric space with the coefficient
\(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
and
\(g:X\longrightarrow X\)
be two mappings and suppose that there exist nonnegative constants
\(k,l\in (0,1]\)
with
\(k+l<\frac{2}{s+1}\)
such that the following contractive condition holds for all
\(x,y,u,v\in X\):
$$d\big (F(x,y),F(u,v)\big )\preceq kd(gx,F(x,y))+ld(gu,F(u,v)),$$
for all
\((x,y),(u,v)\in X^2\)
with (\(gu\sqsubseteq gx\)
and
\(gv\sqsupseteq gy\)) or (\(gx\sqsubseteq gu\)
and
\(gy\sqsupseteq gv\)). Assume that F and
g satisfy the following conditions:
-
1.
\(F(X^{2})\subseteq g(X)\),
-
2.
g(X) is a complete subspace of
X.
Also, suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(gx_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq gy_0\), then F and g have a coupled coincidence point \((x^{*},y^{*})\in X^{2}\).
Corollary 3.4
Let (X, d) be a cone b-metric space with the coefficient
\(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
and
\(g:X\longrightarrow X\)
be two mappings and suppose that there exist nonnegative constants
\(k,l\in (0,1]\)
with
\(k+l<\frac{2}{s(s+1)}\)
such that the following contractive condition holds for all
\(x,y,u,v\in X\):
$$d\big (F(x,y),F(u,v)\big )\preceq kd\big (gx,F(u,v)\big )+ld\big (gu,F(x,y)\big ),$$
for all
\((x,y),(u,v)\in X^2\)
with (\(gu\sqsubseteq gx\)
and
\(gv\sqsupseteq gy\)) or (\(gx\sqsubseteq gu\)
and
\(gy\sqsupseteq gv\)). Assume that F and
g satisfy the following conditions:
-
1.
\(F(X^{2})\subseteq g(X)\),
-
2.
g(X) is a complete subspace of
X.
Also, suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(gx_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq gy_0\), then F and g have a coupled coincidence point \((x^{*},y^{*})\in X^{2}\).
Now we prove the existence and uniqueness of a common coupled fixed point. Note that, if \((X,\sqsubseteq )\) is a partially ordered set, then we endow the product space \(X \times X\) with the following partial order: for \((x,y), (u,v)\in X \times X\), \((u,v)\sqsubseteq (x,y) \Longleftrightarrow x\sqsupseteq u, y\sqsubseteq v\).
Theorem 3.5
In addition to the hypotheses of Theorem
3.1, suppose that for every
\((x, y), (x^*,y^*)\in X \times X\)
there exists
\((u,v)\in X \times X\)
such that (F(u, v), F(v, u)) is comparable both to (F(x, y), F(y, x)) and
\((F(x^*,y^*), F(y^*,x^*))\). Assume that, \(s(a_1+a_2+a_3+a_4)+(a_5+a_6+a_7+a_8+a_9+a_{10})<1\). If F and
g are w-compatible, then F
and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of
F
and g is of the form (u, u) for some
\(u\in X\).
Proof
From Theorem 3.1, F and g have a coupled coincidence point. Suppose (x, y) and \((x^{*},y^{*})\) are coupled coincidence points of F and g, that is \(gx=F(x,y),gy=F(y,x)\) and \(gx^{*}=F(x^{*},y^{*}),gy^{*}=F(y^{*},x^{*})\). First, we will show that
$$gx=gx^{*} \quad and \quad gy=gy^{*}.$$
By assumption, there exists \((u,v)\in X \times X\) such that (F(u, v), F(v, u)) is comparable both to (F(x, y), F(y, x)) and \((F(x^*,y^*), F(y^*,x^*))\). Put \(u_0=u, v_0=v\) and choose \(u_1,v_1 \in X\) such that \(gu_1=F(u_0, v_0)\) and \(gv_1=F(v_0, u_0)\). Continuing this process, we can construct two sequences \(\{gu_n\}\) and \(\{gv_n\}\) such that
$$gu_{n+1}=F(u_n, v_n) \quad and \quad gv_{n+1}=F(v_n, u_n).$$
Also, set \(x_0=x,y=y_0, x^*_0=x^*,y^*_0=y^*\). Define the sequences \(\{gx_n\},\{gy_n\}\) and \(\{gx^*_n\},\{gy^*_n\}\). Since (x, y) and \((x^{*},y^{*})\) are coupled coincidence points of F and g, we have as \(n\longrightarrow \infty\):
$$gx_n \longrightarrow F(x, y), \quad gy_n \longrightarrow F(y,x),$$
and
$$gx^*_n \longrightarrow F(x^*, y^*), \quad gy^*_n \longrightarrow F(y^*,x^*).$$
Since
$$\big (F(x, y), F(y, x)\big )=(gx,gy)$$
and
$$\big (F(u, v), F(v, u)\big )=(gu_1,gv_1)$$
are comparable, then \(gx \sqsubseteq gu_1\) and \(gy \sqsupseteq gv_1\). Similarly, we can show that (gx, gy) and \((gu_n,gv_n)\) are comparable for all \(n\ge 1\), that is, \(gx \sqsubseteq gu_n\) and \(gy \sqsupseteq gv_n\). Now, we can apply the contractive condition:
$$\begin{aligned} d(gu_{n+1},gx)&=d\big (F(u_{n},v_{n}),F(x,y)\big ) \\&\preceq \big [a_1d(gu_{n},F(u_{n},v_{n}))+a_2d(gv_{n},F(v_{n},u_{n}))\big ]\\&\quad + \big [a_3d(gx,F(x,y)+a_4d(gy,F(y,x))\big ]\\&\quad +\big [a_5d(gu_{n},F(x,y))+a_6d(gv_{n},F(y,x))\big ]\\&\quad +\big [a_7d(gx,F(u_{n},v_{n}))+a_8d(gy,F(v_{n},u_{n}))\big ]\\&\quad +\big [a_9d(gu_{n},gx)+a_{10}d(gv_{n},gy)\big ]\\&=\big [a_1d(gu_{n},gu_{n+1})+a_2d(gv_{n},gv_{n+1})\big ]\\&\quad + \big [a_3d(gx,gx)+a_4d(gy,gy)\big ]\\&\quad +\big [a_5d(gu_{n},gx)+a_6d(gv_{n},gy)\big ]\\&\quad +\big [a_7d(gx,gu_{n+1})+a_8d(gy,gv_{n+1})\big ]\\&\quad +\big [a_9d(gu_{n},gx)+a_{10}d(gv_{n},gy)\big ]\\&\preceq \big [sa_1d(gu_{n},gx)+sa_1d(gx,gu_{n+1})\\&\quad +sa_2d(gv_{n},gy)+sa_2d(gy,gv_{n+1})\big ]\\&\quad +\big [a_5d(gu_{n},gx)+a_6d(gv_{n},gy)\big ]\\&\quad +\big [a_7d(gx,gu_{n+1})+a_8d(gy,gv_{n+1})\big ]\\&\quad +\big [a_9d(gu_{n},gx)+a_{10}d(gv_{n},gy)\big ]. \end{aligned}$$
Hence
$$\begin{aligned} d(gu_{n+1},gx)&\preceq \big [(sa_1+a_5+a_9)d(gu_{n},gx)+(sa_1+a_7)d(gu_{n+1},gx)\big ] \\&\quad +\big [(sa_2+a_6+a_{10})d(gv_{n},gy)+(sa_2+a_8)d(gv_{n+1},gy)\big ]. \end{aligned}$$
(3.9)
By similar way, we have
$$\begin{aligned} d(gv_{n+1},gy)&\preceq \big [(sa_1+a_5+a_9)d(gv_{n},gy)+(sa_1+a_7)d(gv_{n+1},gy)\big ] \\&\quad +\big [(sa_2+a_6+a_{10})d(gu_{n},gx)+(sa_2+a_8)d(gu_{n+1},gx)\big ]. \end{aligned}$$
(3.10)
Put, \(\tau _n=d(gu_{n+1},gx)+d(gv_{n+1},gy)\). Adding above inequalities, we get
$$\begin{aligned} \tau _n&\preceq \big [(sa_1+a_5+a_9+sa_2+a_6+a_{10})\tau _{n-1}\big ] \\&\quad +\big [(sa_1+a_7+sa_2+a_8)\tau _n\big ]. \end{aligned}$$
(3.11)
On the other hand starting by gx, we have:
$$\begin{aligned} d(gx,gu_{n+1})&=d\big (F(x,y),F(u_{n},v_{n})\big ) \\&\preceq \big [a_1d(gx,F(x,y)+a_2d(gy,F(y,x))\big ]\\&\quad +\big [a_3d(gu_{n},F(u_{n},v_{n}))+a_4d(gv_{n},F(v_{n},u_{n}))\big ]\\&\quad +\big [a_5d(gx,F(u_{n},v_{n}))+a_6d(gy,F(v_{n},u_{n}))\big ]\\&\quad +\big [a_7d(gu_{n},F(x,y))+a_8d(gv_{n},F(y,x))\big ]\\&\quad +\big [a_9d(gx,gu_{n})+a_{10}d(gy,gv_{n})\big ]\\&= \big [a_1d(gx,gx)+a_2d(gy,gy)\big ]\\&\quad +\big [a_3d(gu_{n},gu_{n+1})+a_4d(gv_{n},gv_{n+1})\big ]\\&\quad +\big [a_5d(gx,gu_{n+1})+a_6d(gy,gv_{n+1})\big ]\\&\quad +\big [a_7d(gu_{n},gx)+a_8d(gv_{n},gy)\big ]\\&\quad +\big [a_9d(gx,gu_{n})+a_{10}d(gy,gv_{n})\big ]\\&\preceq \big [sa_3d(gu_{n},gx)+sa_3d(gx,gu_{n+1})\\&\quad +sa_4d(gv_{n},gy)+sa_4d(gy,gv_{n+1})\big ]\\&\quad +\big [a_5d(gx,gu_{n+1})+a_6d(gy,gv_{n+1})\big ]\\&\quad +\big [a_7d(gu_{n},gx)+a_8d(gv_{n},gy)\big ]\\&\quad +\big [a_9d(gx,gu_{n})+a_{10}d(gy,gv_{n})\big ] \end{aligned}$$
Hence
$$\begin{aligned} d(gx,gu_{n+1})&\preceq \big [(sa_3+a_7+a_9)d(gu_{n},gx)+(sa_3+a_5)d(gu_{n+1},gx)\big ] \\&\quad +\big [(sa_4+a_8+a_{10})d(gv_{n},gy)+(sa_4+a_6)d(gv_{n+1},gy)\big ]. \end{aligned}$$
(3.12)
By similar way, we have
$$\begin{aligned} d(gy,gv_{n+1})&\preceq \big [(sa_3+a_7+a_9)d(gv_{n},gy)+(sa_3+a_5)d(gv_{n+1},gy)\big ] \\&\quad +\big [(sa_4+a_8+a_{10})d(gu_{n},gx)+(sa_4+a_6)d(gu_{n+1},gx)\big ]. \end{aligned}$$
(3.13)
Adding above two inequalities, we get
$$\begin{aligned} \tau _n&\preceq \big [(sa_3+a_7+a_9+sa_4+a_8+a_{10})\tau _{n-1}\big ] \\&\quad +\big [(sa_3+a_5+sa_4+a_6)\tau _n\big ]. \end{aligned}$$
(3.14)
Adding inequalities (3.11) and (3.14), we have
$$\begin{aligned} 2\tau _n&\preceq \big [(sa_1+sa_2+sa_3+sa_4)+(a_5+a_6+a_7+a_8)+2(a_9+a_{10})\big ]\tau _{n-1}\\&\quad +\big [(sa_1+sa_2+sa_3+sa_4)+(a_5+a_6+a_7+a_8)\big ]\tau _n, \end{aligned}$$
which implies that
$$\tau _n\preceq k\tau _{n-1},$$
where \(k=\frac{(sa_1+sa_2+sa_3+sa_4)+(a_5+a_6+a_7+a_8)+2(a_9+a_{10})}{2-\big [(sa_1+sa_2+sa_3+sa_4)+(a_5+a_6+a_7+a_8)\big ]}<1\).
Note that, \(\frac{(sa_1+sa_2+sa_3+sa_4)+(a_5+a_6+a_7+a_8)+2(a_9+a_{10})}{2-\big [(sa_1+sa_2+sa_3+sa_4)+(a_5+a_6+a_7+a_8)\big ]}<1\) equivalently \(s(a_1+a_2+a_3+a_4)+(a_5+a_6+a_7+a_8+a_9+a_{10})<1\).
Now, we have
$$\begin{aligned} \tau _n&\preceq k\tau _{n-1} \\&\preceq k^2\tau _{n-2} \\&\vdots \\&\preceq k^n\tau _{0}\quad \longrightarrow \theta \quad {\text {as}}\quad n\longrightarrow \infty . \end{aligned}$$
(3.15)
According to Lemma 2.3 (2), and for any \(c\in E\) with \(c\gg \theta\), there exists \(N_0\in {\mathbb {N}}\) such that for any \(n>N_0\), \(k^n\ll c\). Furthermore, from (3.15) and for any \(n>N_0\), Lemma 2.3 (3) shows that
$$d(gu_{n+1},gx)+d(gv_{n+1},gy)\ll c,$$
which implies that
and
Hence, by Definition 2.2 (1), \(gu_{n}\longrightarrow gx\) and \(gv_{n}\longrightarrow gy\). By the same way, we can prove that \(gu_{n}\longrightarrow gx^*\) and \(gv_{n}\longrightarrow gy^*\). The uniqueness of the limit implies that \(gx=gx^*\) and \(gy=gy^*\). That is, the unique coupled point of coincidence of F and g is (gx, gy).
Clearly that if (gx, gy) is a coupled point of coincidence of F and g, then (gy, gx) is also a coupled points of coincidence of F and g. Then \(gx = gy\) and therefore (gx, gx) is the unique coupled point of coincidence of F and g.
Now, let \(u=gx=F(x,y)\). Since F and g are w-compatible, then we have
$$gu=g(gx)=gF(x,y) =F(gx,gy)=F(gx,gx) =F(u,u).$$
Then (gu, gu) is a coupled point of coincidence and also we have (u, u) is a coupled point of coincidence. The uniqueness of the coupled point of coincidence implies that \(gu= u\). Therefore \(u=gu=F(u,u)\). Hence (u, u) is the unique common coupled fixed point of F and g. This completes the proof. \(\square\)
From Theorem 3.5, we have the following corollaries.
Corollary 3.6
In addition to the hypotheses of Corollary
3.2, suppose that for every
\((x, y), (x^*,y^*)\in X \times X\)
there exists
\((u,v)\in X \times X\)
such that (F(u, v), F(v, u)) is comparable both to (F(x, y), F(y, x)) and
\((F(x^*,y^*), F(y^*,x^*))\). If F and
g are w-compatible, then F and
g have a unique common coupled fixed point. Moreover, a common coupled fixed point of
F and
g is of the form (u, u) for some
\(u\in X\).
Corollary 3.7
In addition to the hypotheses of Corollary
3.3. Suppose that for every
\((x, y), (x^*,y^*)\in X \times X\)
there exists
\((u,v)\in X \times X\)
such that (F(u, v), F(v, u)) is comparable both to (F(x, y), F(y, x)) and
\((F(x^*,y^*), F(y^*,x^*))\). Assume that, \(k+l<\frac{1}{s}\). If F and
g are w-compatible, then F
and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of
F and
g is of the form (u, u) for some
\(u\in X\).
Corollary 3.8
In addition to the hypotheses of Corollary
3.4. Suppose that for every
\((x, y), (x^*,y^*)\in X \times X\)
there exists
\((u,v)\in X \times X\)
such that (F(u, v), F(v, u)) is comparable both to (F(x, y), F(y, x)) and
\((F(x^*,y^*), F(y^*,x^*))\). If F and
g are w-compatible, then F
and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of
F and
g is of the form (u, u) for some
\(u\in X\).
Remark 3.9
Theorems 3.1 and 3.5 extend and generalize Theorems 3.1 and 3.2 of Nashine et al. [3] to cone b-metric spaces, respectively.
Now, we present one example to illustrate our results.
Example 3.10
Let \(X={\mathbb {R}}\) be ordered by the following relation:
$$x \sqsubseteq y \quad \Longleftrightarrow \quad x=y \quad {\text {or}} \quad \big (x,y\in [0,1] \quad {\text {and} }\quad x\le y\big ).$$
Let \(E=C_{\mathbb {R}}^1\left[ 0,1\right]\) with \(\left\| u\right\| =\left\| u\right\| _\infty +\left\| u^{\prime }\right\| _\infty ,u\in E\) and suppose that, \(P=\left\{ u\in E:u\left( t\right) \ge 0{\text { on }}\left[ 0,1\right] \right\} .\) It is well known that this cone is solid, but it is not normal. Define a cone b-metric \(d:X\times X\rightarrow E\) by \(d\left( x,y\right) \left( t\right) =\left| x-y\right| ^2e^t.\) Then \(\left( X,d\right)\) is a complete cone b-metric space with the coefficient \(s=2.\) Let \(F:X\times X\rightarrow X\)
\(F(x,y)=\frac{x-y}{60}\) and define \(g:X\rightarrow X\) by:
$$\begin{aligned} g(x)=\left\{ \begin{array}{ll} \frac{1}{2}x, &\quad {\text {if }}\quad x<0, \\ x, & \quad {\text {if} }\quad x\in [0,1], \\ \frac{1}{2}x+\frac{1}{3}, & \quad {\text {if }} \quad x>1. \end{array} \right. \end{aligned}$$
We will check that conditions of theorems 3.1 and 3.5 are fulfilled for all \(x,y,u,v\in X\) with (\(gu\sqsubseteq gx\) and \(gv\sqsupseteq gy\)) or (\(gx\sqsubseteq gu\) and \(gy\sqsupseteq gv\)). The following cases are possible.
-
case 1:
\(x,y,u,v \in [0,1]\). We have
$$\begin{aligned} d\big (F(x,y),F(u,v)\big )(t)&=\left| \frac{x-y}{60}- \frac{u-v}{60}\right| ^2{\mathrm{e}}^t\\&\preceq 2\left( \frac{1}{60}\left| x-u\right| ^2e^t+ \frac{1}{60}\left| y-v\right| ^2{\mathrm{e}}^t\right) \\&= \frac{1}{30}\left| x-u\right| ^2{\mathrm{e}}^t+ \frac{1}{30}\left| y-v\right| ^2{\mathrm{e}}^t\\&=a_9d(gx,gu)(t)+a_{10}d(gy,gv)(t), \end{aligned}$$
where \(a_9=\frac{1}{30}= a_{10}\) and \(a_i=0,i=1,2,\ldots ,8\).
-
case 2:
\(x,y\in [0,1]\) and u, v not in [0, 1]. Then gy, gv not in [0, 1] and since they must be comparable, \(gy = gv\) and \(y = v\). Then we have:
$$\begin{aligned} d\big (F(x,y),F(u,v)\big )(t)&=\left| \frac{x-u}{60}\right| ^2{\mathrm{e}}^t\\&\preceq a_9d(gx,gu)(t)+a_{10}d(gy,gv)(t), \end{aligned}$$
where \(a_9=\frac{1}{30}= a_{10}\) and \(a_i=0,i=1,2,\ldots ,8\).
-
case 3:
\(u,v\in [0,1]\) and x, y not in [0, 1]. This case will be similar to case 2.
-
case 4:
If x, y, u, v not in [0,1] then the only possibility for gx and gu, as well as gy and gv to be comparable is that \(x = u\) and \(y = v\). In this case conditions of Theorem 3.1 are trivially satisfied.
Note that, \(2s(a_9+a_{10})=4(\frac{1}{30}+\frac{1}{30})<2\), \(F(X\times X)\subseteq g(X)\) and g(X) is a complete subspace of X. Also, F has the mixed g-monotone property. Hence, the conditions of Theorem 3.1 are satisfied, that is, F and g have a coupled coincidence point (0, 0). Also, F and g are w-compatible at (0, 0) and \(a_9+a_{10}<1\). Hence, Theorem 3.5 shows that, (0, 0) is the unique common coupled fixed point of F and g.
Finally, we have the following result (immediate consequence of Theorems 3.1 and 3.5).
Theorem 3.11
Let
\((X,\sqsubseteq )\)
be a partially ordered set and (X, d) be a complete cone b-metric space with the coefficient
\(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
be a mapping having the mixed monotone property on X and suppose that there exist nonnegative constants
\(a_i\in [0,1),i=1,2,\ldots ,10\)
with
\(\sum _{i=1}^{10}a_i<1\)
such that the following contractive condition holds
$$\begin{aligned} d(F(x,y),F(u,v))&\preceq \big [a_1d(x,F(x,y)) +a_2d(y,F(y,x))\big ]\\&\quad +\big [a_3d(u,F(u,v)) +a_4d(v,F(v,u))\big ]\\&\quad +\big [a_5d(x,F(u,v))+a_6d(y,F(v,u))\big ]\\&\quad +\big [a_7d(u,F(x,y))+a_8d(v,F(y,x))\big ]\\&\quad +\big [a_9d(x,u)+a_{10}d(y,v)\big ], \end{aligned}$$
for all
\((x,y),(u,v)\in X^2\)
with (\(u\sqsubseteq x\)
and
\(v\sqsupseteq y\)) or (\(x\sqsubseteq u\)
and
\(y\sqsupseteq v\)) such that:
-
(A)
\((s+1)(a_1+a_2+a_3+a_4)+s(s+1)(a_5+a_6+a_7+a_8)+2s(a_9+a_{10})<2\)
-
(B)
\(s(a_1+a_2+a_3+a_4)+(a_5+a_6+a_7+a_8+a_9+a_{10})<1\).
Suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(x_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq y_0\), then F has a coupled fixed point \((x^{*},y^{*})\in X^{2}\). Moreover, the coupled fixed point is unique and of the form \((x^{*},x^{*})\) for some \(x^{*}\in X\).
The following corollaries can be obtained from Theorem 3.11.
Corollary 3.12
Let
\((X,\sqsubseteq )\)
be a partially ordered set and (X, d) be a complete cone b-metric space with the coefficient
\(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
be a mapping having the mixed monotone property on X and suppose that there exist nonnegative constants
\(k,l\in (0,1]\)
with
\(k+l<\frac{1}{s}\)
such that the following contractive condition holds
$$d\big (F(x,y),F(u,v)\big )\preceq kd(x,u)+ld(y,v),$$
for all
\((x,y),(u,v)\in X^2\)
with (\(u\sqsubseteq x\)
and
\(v\sqsupseteq y\)) or (\(x\sqsubseteq u\)
and
\(y\sqsupseteq v\)). Suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(x_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq y_0\), then F has a coupled fixed point \((x^{*},y^{*})\in X^{2}\). Moreover, the coupled fixed point is unique and of the form \((x^{*},x^{*})\) for some \(x^{*}\in X\).
Corollary 3.13
Let
\((X,\sqsubseteq )\)
be a partially ordered set and (X, d) be a complete cone b-metric space with the coefficient
\(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
be a mapping having the mixed monotone property on X and suppose that there exist nonnegative constants
\(k,l\in (0,1]\)
with
\(k+l<\frac{1}{s}\)
such that the following contractive condition holds
$$d\big (F(x,y),F(u,v)\big )\preceq kd(x,F(x,y))+ld(u,F(u,v)),$$
for all
\((x,y),(u,v)\in X^2\)
with (\(u\sqsubseteq x\)
and
\(v\sqsupseteq y\)) or (\(x\sqsubseteq u\)
and
\(y\sqsupseteq v\)). Suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(x_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq y_0\), then F has a coupled fixed point \((x^{*},y^{*})\in X^{2}\). Moreover, the coupled fixed point is unique and of the form \((x^{*},x^{*})\) for some \(x^{*}\in X\).
Note that, in above corollary, we ignore condition \(k+l<\frac{2}{s+1}\) because \(\frac{1}{s}\le \frac{2}{s+1}\).
Corollary 3.14
Let
\((X,\sqsubseteq )\)
be a partially ordered set and (X, d) be a complete cone b-metric space with the coefficient
\(s\ge 1\)
relative to a solid cone P. Let
\(F:X^{2}\longrightarrow X\)
be a mapping having the mixed monotone property on X and suppose that there exist nonnegative constants
\(k,l\in (0,1]\)
with
\(k+l<\frac{2}{s(s+1)}\)
such that the following contractive condition holds
$$d\big (F(x,y),F(u,v)\big )\preceq kd\big (x,F(x,y)\big )+ld\big (u,F(u,v)\big ),$$
for all
\((x,y),(u,v)\in X^2\)
with (\(u\sqsubseteq x\)
and
\(v\sqsupseteq y\)) or (\(x\sqsubseteq u\)
and
\(y\sqsupseteq v\)). Suppose that X has the following properties:
-
(i)
if a non-decreasing sequence \(\{x_n\}\) in X is such that \(x_n\longrightarrow x\), then \(x_n \sqsubseteq x\) for all \(n\in {\mathbb {N}}\),
-
(ii)
if a non-increasing sequence \(\{y_n\}\) in X is such that \(y_n\longrightarrow y\), then \(y_n \sqsupseteq y\) for all \(n\in {\mathbb {N}}\).
If there exist \(x_{0},y_{0}\in X\) such that \(x_0\sqsubseteq F(x_{0},y_{0})\) and \(F(y_{0},x_{0})\sqsubseteq y_0\), then F has a coupled fixed point \((x^{*},y^{*})\in X^{2}\). Moreover, the coupled fixed point is unique and of the form \((x^{*},x^{*})\) for some \(x^{*}\in X\).
Example 3.15
Let \(X={\mathbb {R}}\) with usual order and let a cone b-metric d defined as in Example 3.10,
$$d\left( x,y\right) \left( t\right) =\left| x-y\right| ^2\,\cdot \,{\mathrm{e}}^t.$$
Then \(\left( X,d\right)\) is a cone b-metric space with the coefficient \(s=2.\) Now, let \(F:X\times X\rightarrow X\) as
$$F\left( x,y\right) =\frac{x-2y}{8}.$$
We shall check that this example satisfies all conditions of Corollary 3.12.
Indeed, we have
$$\begin{aligned} d\big ( F\left( x,y\right) ,F\left( u,v\right) \big ) \left( t\right)= & {} \left| \frac{x-2y}{8}-\frac{u-2v}{8}\right| ^2\, \cdot \,{\mathrm{e}}^t\\= & {} \left| \frac{x-u}{8}-\frac{2\left( y-v\right) }{8}\right| ^2\,\cdot \,{\mathrm{e}}^t\\\le & {} \frac{1}{64}\left( \left| x-u\right| ^2+4\left| y-v\right| ^2+4\left| x-u\right| \left| y-v\right| \right)\, \cdot \,{\mathrm{e}}^t \\\le & {} \frac{1}{64}\left( \left| x-u\right| ^2+4\left| y-v\right| ^2+2\left( \left| x-u\right| ^2+\left| y-v\right| ^2\right) \right) \, \cdot \, {\mathrm{e}}^t \\= & {} \frac{3}{64}\left| x-u\right| ^2\,\cdot \, e^t+\frac{6}{64}\left| y-v\right| ^2\,\cdot \, {\mathrm{e}}^t, \end{aligned}$$
for all \(x,y,u,v\in X\) with \(x\le u\) and \(y\le v\) or \(x\ge u\) and \(y\le v\) and for all \(t\in \left[ 0,1\right] .\) Taking \(k=\frac{3}{64},l=\frac{6}{64}\) we get
$$d\left( F\left( x,y\right) ,F\left( u,v\right) \right) \le kd\left( x,u\right) +ld\left( y,v\right) .$$
Since \(k+l=\frac{9}{64}<\frac{1}{2}=\frac{1}{s}\), we have that this example of ordered cone b-metric space over (only) solid cone supports Corollary 3.12. Here, \(\left( 0,0\right)\) is (even) unique coupled fixed point.
Remark 3.16
It is worth to notice that using already some known methods (for example see [24, 25] ) contractive condition from Theorem 3.1. implies the following contractive condition in ordered cone b-metric space \(\left( X\times X,D,\sqsubseteq \right)\!:\)
$$\begin{aligned} D\left( T_FY,T_FV\right)\le & {} A_1D\left( T_gY,T_FY\right) +A_2D\left( T_gV,T_FV\right) +A_3D\left( T_gY,T_FV\right) \\&+A_4D\left( T_gV,T_FY\right) +A_5D\left( T_gY,T_gV\right), \end{aligned}$$
where
$$A_1=a_1+a_2,A_2=a_3+a_4,A_3=a_5+a_6,A_4=a_7+a_8,A_5=a_9+a_{10},$$
with
$$\left( s+1\right) \left( A_1+A_2\right) +s\left( s+1\right) \left( A_3+A_4\right) +2sA_2<2,$$
and
$$D\left( \left( x,y\right) ,\left( u,v\right) \right) =d\left( x,u\right) +d\left( y,v\right) .$$
It is not hard to check that \(\left( X\times X,D\right)\) is a new cone b-metric space with the same coefficient s as \(\left( X,d\right) .\) Also, \(\left( X\times X,D\right)\) is a ordered cone b-metric space. It is clear that the approach with new ordered cone b-metric space is much shorter, but both ordered cases are new.