Skip to main content

Advertisement

Log in

Mitigation of greenhouse gas emissions from power generation through cofiring coal and raw glycerol: a theoretical feasibility study

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

A theoretical technical feasibility investigation aiming to decrease the rate of greenhouse emissions per unit of generated power from fossil fuel plants is presented. To that end, the FGSIG/GT (fuel glycerol integrated gasifier/gas turbine) concept is applied. High-ash coal and raw glycerol—that last deriving from renewable fuel (biodiesel) production—are mixed to form a slurry, which is pumped into the gasifier. The gas stream emerging from that reactor is cleaned by cyclones and filters to decrease the concentration of suspended solids in the stream as well as its granulometry. Before combustion, the fuel gas temperature is decreased to values below the dew points of alkaline compounds in it, thus significantly reducing their concentrations in the gas stream, therefore allowing its injection into commercial gas turbines. Energy recovering is accomplished by two Rankine cycles. The exergetic efficiency is chosen as an objective function to optimize the gasification process. The results reveal a diverging aspect of the RG/solid-fuel ratio influence on the gasification efficiency when comparing with the obtained in previous works where biomasses were fed to the FGSIG/GT process. Due to that highly pressurized process, the whole power generation is optimized resulting in first law efficiencies around 45%, which is noticeable having in mind the relatively low heating values of the presently considered fuels. Additionally, it is important to stress that the objective of this investigation is not just to decrease the overall CO2 emitted per unit of power output from a station consuming fossil fuel and shift, at least part of that, to one derived from a renewable source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. www.csfmb.com.

Abbreviations

CE:

Chemical contribution to the exergetic efficiency

CGE:

Cold gas efficiency

DSC:

Dry solid content of a slurry

EE:

Exergetic efficiency

FGSIG/GT:

Fuel glycerol slurry integrated gasifier/gas turbine power generation process

HAC:

High-ash coal

RG:

Raw glycerol

TE:

Thermal contribution to the exergetic efficiency

Z:

Vertical coordinate inside the gasifier, where Z = 0 is the base of gas distributor surface

References

  1. Kurose, R., Ikeda, M., Makino, H.: Combustion characteristics of high ash coal in a pulverized coal combustion. Fuel 80, 1147–1455 (2001). https://doi.org/10.1016/S0016-2361(01)00020-5

    Article  Google Scholar 

  2. de Souza-Santos, M.L.: Lima EHS (2015) introductory study on fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to high-ash or low-grade coal. Fuel 143, 275–284 (2022). https://doi.org/10.1016/j.fuel.2014.11.060.AccessedonJanuary18

    Article  Google Scholar 

  3. Brazilian Ministry of Mines and Energy 2019 report. https://www.gov.br/mme/pt-br/acesso-a-informacao/arquivos/auditorias/2019/arquivos-1/relatoriogestaomme-2019.pdf. Accessed on October 14, 2021.

  4. Oil, Natural Gas and Biofuels Statistical Yearbook 2021, https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/oil-natural-gas-and-biofuels-statistical-yearbook-2021. Accessed on January 18, 2022.

  5. Pachauri, N., He, B.: Value-added utilization of crude glycerol from biodiesel production: a survey of current research activities. In: ASABE meeting presentation, 066223, Portland, Oregon 9–12 July 2006 (2000)

  6. Leoneti, A.B., Aragão-Leoneti, V., DeOliveira, S.V.W.B.: Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renewab Energy 45, 138–145 (2012). https://doi.org/10.1016/j.renene.2012.02.032

    Article  Google Scholar 

  7. de Souza-Santos, M.L.: Proposals for power generation based on processes consuming biomass-glycerol slurries. Energy 120(1), 959–974 (2017). https://doi.org/10.1016/j.energy.2016.12.005

    Article  Google Scholar 

  8. de Souza-Santos, M.L., Camara, M.A.: Theoretical study on the effect of glycerol fraction in slurries with biomass consumed by a power generation process. Energy Fuels (2017). https://doi.org/10.1021/acs.energyfuels.7b02996

    Article  Google Scholar 

  9. Cadavez, C., de Souza-Santos, M.L.: Efficiency of a power generation alternative regarding the composition of feeding biomass-glycerol slurry. Theoret Assess Energy 214, 2022 (2021). https://doi.org/10.1016/j.energy.2020.118967

    Article  Google Scholar 

  10. Raza, M., Inayat, A., Abu-Jdayil, B.: Crude glycerol as a potential feedstock for future energy via thermochemical conversion processes: a review. Sustainability 13, 12813 (2021). https://doi.org/10.3390/su132212813

    Article  Google Scholar 

  11. Rodrigues, A., Bordado, J.C., Galhano dos Santos, R.: Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals—a technological review for three chemical pathways. Energies 10(11), 1817 (2017)

    Article  Google Scholar 

  12. Bohon, M.D., Metzger, B.A., Linak, W.P., King, C.J., Roberts, W.L: Glycerol combustion and emissions. In: Proceedings of the Combustion Institute (2010).

  13. Mills, D.: Pneumatic Conveying Design Guide, 3rd edn. Butterworth-Heinemann, Oxford (2016). https://doi.org/10.1016/C2014-0-02678-0

    Book  Google Scholar 

  14. Vimalchand, P., Peng, W.W., Liu, G.P., Peng, W.W., Liu, G.: High pressure feeder and method of operating to feed granular or fine materials US20110146153A1 (2011). 17 Jul 2011. https://www.google.com/patents/US20110146153. Accessed 31 May 31 2021

  15. Anthony, E.J.: Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. PECS 21(3), 239–268 (1995). https://doi.org/10.1016/0360-1285(95)00005-3

    Article  Google Scholar 

  16. Breault, R.W.: Gasification processes old and new: a basic review of the major technologies. Energies 3, 216–240 (2010). https://doi.org/10.3390/en3020216

    Article  Google Scholar 

  17. Laugwitz, A., Grabner, M., Meyer, B.: Availability analysis of integrated gasification combined cycle (IGCC) power plants. In: Power Plant Life Management and Performance Improvement, Woodhead Publishing Limited (2011). https://doi.org/10.1533/9780857093806.1.110.

  18. de Souza-Santos, M.L.: Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation, 2nd edn. New York, CRC Press (2010)

    Book  Google Scholar 

  19. de Souza-Santos, M.L.: Modelling and simulation of fluidized-bed boilers and gasifiers for carbonaceous solids. Ph.D. Dissertation, University of Sheffield, United Kingdom (1987)

  20. de Souza-Santos, M.L.: Comprehensive modelling and simulation of fluidized-bed boilers and gasifiers. Fuel 68(1507–1521), 2022 (1989)

    Google Scholar 

  21. de Souza-Santos, M.L.: Comprehensive simulator (CSFMB) applied to circulating fluidized bed boilers and gasifiers. Open Chem. Eng. J. 2, 106–118 (2008)

    Article  Google Scholar 

  22. de Souza-Santos, M.L.: CSFB applied to fluidized-bed gasification of special fuels. Fuel 88(826–833), 2022 (2009). https://doi.org/10.1016/j.fuel.2008.10.035.AccessedonJanuary18

    Article  Google Scholar 

  23. Krzywanski, J., Zylka, A., Czakiert, T., Kulicki, K., Jankowska, S., Nowak, W.: A 1.5D model of a complex geometry laboratory scale fluidized bed CLC equipment. Powder Technol. (2016). https://doi.org/10.1016/j.powtec.2016.09.041

    Article  Google Scholar 

  24. Zylka, A., Krzywanski, J., Czakiert, T., Idziak, K., Sosnowski, M., De Souza-Santos, M.L., Sztekler, K., Nowak, W.: Modeling of the chemical looping combustion of hard coal and biomass using ilmenite as the oxygen carrier. Energies (2020). https://doi.org/10.3390/en13205394.AccessedOctober19

    Article  Google Scholar 

  25. de Souza-Santos, M.L.: Application of comprehensive simulation of fluidized-bed reactors to the pressurized gasification of biomass. J. Braz. Soc. Mech. Sci. 16, 376–383 (1994)

    Google Scholar 

  26. de Souza-Santos, M.L., Chavez, J.V.: Preliminary studies on advanced power generation based on combined cycle using a single high-pressure fluidized bed boiler and consuming sugar-cane bagasse. Fuel 95, 221–225 (2012)

    Article  Google Scholar 

  27. de Souza-Santos, M.L., Chavez, J.V.: Development of studies on advanced power generation based on combined cycle using a single high-pressure fluidized bed boiler and consuming sugar cane bagasse. Energy Fuels 26, 1952–1963 (2012). https://doi.org/10.1021/ef2019935

    Article  Google Scholar 

  28. deSouza-Santos, M.L., Chavez, J.V.: Second round on advanced power generation based on combined cycle using a single high-pressure fluidized bed boiler and consuming biomass. Open Chem. Eng. J. 6, 41–47 (2012). https://doi.org/10.2174/1874123101206010041

    Article  Google Scholar 

  29. de Souza-Santos, M.L., Ceribeli, K.: Technical evaluation of a power generation process consuming municipal solid waste. Fuel 108, 578–585 (2012). https://doi.org/10.1016/j.fuel.2012.12.037

    Article  Google Scholar 

  30. de Souza-Santos, M.L., Beninca, W.A.: New strategy of fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to biomass. Energy & Fuel 28(4), 2697–2707 (2014). https://doi.org/10.1021/ef500317a

    Article  Google Scholar 

  31. de Souza-Santos, M.L., Bernal, A.F.B., Rodriguez-Torres, A.F.: New developments on fuel-slurry integrated gasifier/gas turbine (FSIG/GT) alternative for power generation applied to biomass; configuration requiring no steam for gasification. Energy & Fuels 29(6), 3879–3889 (2015). https://doi.org/10.1021/acs.energyfuels.5b00775

    Article  Google Scholar 

  32. de Souza-Santos, M.L.: Very high-pressure fuel-slurry integrated gasifier/gas turbine (FSIG/GT) power generation applied to biomass. Energy Fuels 29, 8066–8073 (2015). https://doi.org/10.1021/acs.energyfuels.5b02093

    Article  Google Scholar 

  33. Mantovani, H.B., de Souza-Santos, M.L.: Theoretical analysis of power generation applying supercritical steam and high-pressure combustion chamber consuming biomass slurry. Int. J. Energy Environ. Eng. (2021). https://doi.org/10.1007/s40095-021-00432-x

    Article  Google Scholar 

  34. de Souza-Santos, M.L.: A study on thermo-chemically recuperated power generation systems using natural gas. Fuel 76, 593–601 (1997). https://doi.org/10.1016/S0016-2361(97)00059-8

    Article  Google Scholar 

  35. Basu, P.: Combustion and Gasification in Fluidized Beds. CRC Press, Boca Raton, FL (2006)

    Book  Google Scholar 

  36. Bair, W.G., Tarman, P.B.: Slurry Pumping Techniques for Feeding high-Pressure Coal Gasification Reactors. Institute of Gas Technology, Chicago, IL (1977)

    Google Scholar 

  37. He, W., Park, C.S., Joseph, N.M.: A rheological study on the pumpability of co-mingled biomass and coal slurries. In: Proceedings of the Pittsburgh Coal Conference, Pittsburgh, PA, PCC - Proceedings. Jan., 2008. (2008)

  38. He, W., Park, C.S., Norkeck, J.M.: Rheological study of comingled biomass and coal slurries with hydrothermal pretreatment. Energy Fuels 23(10), 4763–4767 (2009). https://doi.org/10.1021/ef9000852

    Article  Google Scholar 

  39. GIW Industries, Inc: Centrifugal Slurry Pump Concentration Limit Testing Phase 1. The Florida Institute of Phosphate Research, Bartow, FL (2005)

    Google Scholar 

  40. Shijazhuang Minerals Equipment Co., Personal correspondence . Retrieved from sales33@cnmineralsequipment.com. Acessed 04 Aug 2020.

  41. de Souza-Santos, M.L.: Theoretical models for rates of heterogeneous reactions during combustion and gasification of liquid fuels in fluidized beds. Brazilian Journal of Chemical Engineering 35(2), 679–690 (2018). https://doi.org/10.1590/0104-6632.20180352s20160495

    Article  Google Scholar 

  42. Boyce, P.M.: Axial Flow Compressors. http://www.netl.doe.gov/File%20Library/Research/Coal/energy%20systems/turbines/handbook/2-0.pdf. Accessed on August 2015.

  43. Bala-Litwiniak, A., Radomiak, H.: Possibility of the utilization of waste glycerol as an addition to wood pellets. Waste Biomass Valoriz 10, 2193–2199 (2019). https://doi.org/10.1007/s12649-018-0260-7

    Article  Google Scholar 

  44. Mitsubishi Heavy Industries. Gas Turbines. Mitsubishi Heavy Industries, Ltd. Global Website|MHI Selects "Best Innovation 2011" Awards (2011). Accessed June 2022

  45. Larson, E.D., Williams, R.H., Leal, M.R.L.V.: A review of biomass integrated gasifier/gas turbine combined cycle technology and its application in sugarcane industries, with an analysis for Cuba. Energy Sustain. Dev. 5(1), 54–76 (2001). https://doi.org/10.1016/S0973-0826(09)60021-1

    Article  Google Scholar 

  46. Manente, G., Lazzaretto, A.: Innovative biomass to power conversion systems based on cascaded supercritical CO 2 Brayton cycles. Biomass Bioenerg. 69, 155–168 (2014). https://doi.org/10.1016/j.biombioe.2014.07.016

    Article  Google Scholar 

  47. Consonni, S., Larson, E.D.: Biomass-gasifier/aeroderivative gas turbine combined cycles: part A – technologies and performance modeling. J. Eng. Gas Turbine Power 118(3), 507–515 (1996). https://doi.org/10.1115/1.2816677

    Article  Google Scholar 

  48. Consonni, S., Larson, E.D.: Biomass-gasifier/aeroderivative gas turbine combined cycles: Part B – performance calculations and economic assessment. J. Eng. Gas Turbine Power 118(3), 516–525 (1996). https://doi.org/10.1115/1.2816678

    Article  Google Scholar 

  49. Department of Energy, Office of Fossil and Carbon Management, https://www.energy.gov/fecm/science-innovation/office-clean-coal-and-carbon-management/advanced-energy-systems/transformative. Accessed on August 30, 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio L. de Souza-Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Important tables mentioned in the text are presented below (Tables 5, 6, 7).

Table 5 Main results for each rate of RG injection into the gasifier
Table 6 Most important parameters related to gasification operations for various DSC
Table 7 Produced gas composition (molar percentage) for each case

Appendix 2

To provide a more complete view, the following figures illustrate a few aspects of the gasifier operation under those conditions. Those have been obtained by the application of CeSFaMB© software.

Figures 9 and 10 picture the temperature profiles in the bed and freeboard, respectively.

Fig. 9
figure 9

Temperature profiles inside the gasifier bed

Fig. 10
figure 10

Temperature profiles inside the gasifier freeboard

As expected at bubbling fluidized bed operations, the temperatures are uniform and relatively low, which allows for easier control as well many advantages when compared with other techniques [18, 35].

Figure 11 shows that complete cracking and coking of tar generated during the fuel pyrolysis near its feeding position (Z = 0.5 m) could be achieved. Thus, the produced gas would be free of Tar. Such prevents operational problems and maintenance costs to clean the produced gas.

Fig. 11
figure 11

Molar fractions of Tar, H2S, and NH3 throughout the gasifier

Figure 12 allows observing the fast development and destruction of Tar near the fuel feeding position, which is far below the bed top. Therefore, well-designed equipment would allow sufficient bed height to complete those reactions before gas with Tar passes to the freeboard region; otherwise, the risk of jeopardizing the gas cleaning system increases. Additionally, the fuel feeding position is above the oxidation region, thus allowing the volatiles—rich in hydrogen, methane, and carbon monoxide—to survive and improve the quality of the produced gas.

Fig. 12
figure 12

Rates of Tar decomposition in the emulsion phase

Figure 13 shows other important heterogeneous reactions occurring in the emulsion. It becomes clear how fast fuel oxidation is when compared with gas–solid reactions. That also explains the surge of temperatures near the distributor (Z = 0), as shown in Fig. 9, as well as the fast decline of oxygen near that position (Fig. 14).

Fig. 13
figure 13

Main gas–solid reaction rates

Fig. 14
figure 14

Concentration of CO2, CO, and O2 throughout the equipment

The concentration profiles of other important gas species throughout the gasifier interior are presented in Fig. 15.

Fig. 15
figure 15

Concentration of H2O, H2, and CH4 throughout the equipment

Drying and evaporation of water entering with the slurry is paramount for hydrogen production (see reaction R.3 in Appendix 3). The rates of those reactions are also pictured in Fig. 9, while Fig. 16 illustrates the main homogeneous ones.

Fig. 16
figure 16

Main gas–gas reaction rates

That figure demonstrates the key role played by the shift reaction (R.41 in Appendix 3) throughout the bed, which continues in the freeboard.

Appendix 3

A list of main reactions and processes considered by the simulator (CeSFaMB©) is presented below:

$${\text{CH}}_{{a_{32} }} {\text{O}}_{{a_{33} }} {\text{N}}_{{a_{34} }} {\text{S}}_{{a_{35} }} + \left( {\frac{{a_{32} }}{4} - \frac{{a_{33} }}{2} + \frac{{a_{34} }}{2} + a_{35} } \right){\text{O}}_{2} \to {\text{CO}}_{2} + \frac{{a_{32} }}{2}{\text{H}}_{2} {\text{O}} + a_{34} {\text{NO}} + a_{35} {\text{SO}}_{2}$$
(R.1)
$${\text{CH}}_{{a_{32} }} {\text{O}}_{{a_{33} }} {\text{N}}_{{a_{34} }} {\text{S}}_{{a_{35} }} + (1 - a_{33} ){\text{H}}_{2} {\text{O}} \leftrightarrow \left( {1 + \frac{{a_{32} }}{2} - a_{33} - a_{35} } \right){\text{H}}_{2} + {\text{CO}} + \frac{{a_{34} }}{2}{\text{N}}_{2} + a_{35} {\text{H}}_{2} {\text{S}}$$
(R.3)
$${\text{CH}}_{{a_{531} }} {\text{O}}_{{a_{551} }} {\text{N}}_{{a_{546} }} {\text{S}}_{{a_{563} }} + {\text{CO}}_{2} \leftrightarrow 2{\text{CO}} + a_{551} {\text{H}}_{2} {\text{O}} + \left( {\frac{{a_{531} }}{2} - a_{551} - \frac{{3a_{546} }}{2} - a_{563} } \right){\text{H}}_{2} + a_{34} {\text{NH}}_{3} + a_{35} {\text{H}}_{2} {\text{S}}$$
(R.4)
$${\text{CH}}_{{a_{531} }} {\text{O}}_{{a_{551} }} {\text{N}}_{{a_{546} }} {\text{S}}_{{a_{563} }} + \left( {2 - \frac{{a_{531} }}{2} + a_{551} + \frac{3}{2}a_{546} + a_{563} } \right){\text{H}}_{2} \leftrightarrow {\text{CH}}_{4} + a_{551} {\text{H}}_{2} {\text{O}} + a_{34} {\text{NH}}_{3} + a_{35} {\text{H}}_{2} {\text{S}}$$
(R.5)
$${\text{CH}}_{{a_{32} }} {\text{O}}_{{a_{33} }} {\text{N}}_{{a_{34} }} {\text{S}}_{{a_{35} }} + (2 - a_{33} ){\text{NO}} \leftrightarrow \left( {\frac{{a_{32} }}{2} - a_{35} } \right){\text{H}}_{2} + {\text{CO}}_{2} + \left( {1 + \frac{{a_{34} }}{2} - \frac{{a_{33} }}{2}} \right){\text{N}}_{2} + a_{35} {\text{H}}_{2} {\text{S}}$$
(R.6)
$$\text{Fuel}_\text{daf} \to \text{Volatile} + \, \text{Char}_{1}$$
(R.7)
$${\text{Volatile }} \to {\text{Gases}} + {\text{Tar}}$$
(R.8)
$${\text{Wet}}\;{\text{Carbonaceous}}\;{\text{Solid }} \rightleftarrows {\text{ Dry}}\;{\text{Carbonaceous}}\;{\text{Solid}} + {\text{H}}_{{2}} {\text{O}}$$
(R.10)
$${\text{CH}}_{{a_{32} }} {\text{O}}_{{a_{33} }} {\text{N}}_{{a_{34} }} {\text{S}}_{{a_{35} }} + (2 - a_{33} ){\text{NO}} \leftrightarrow \left( {\frac{{a_{32} }}{2} - a_{35} } \right){\text{H}}_{2} + {\text{CO}}_{2} + \left( {1 + \frac{{a_{34} }}{2} - \frac{{a_{33} }}{2}} \right){\text{N}}_{2} + a_{35} {\text{H}}_{2} {\text{S}}$$
(R.12)
$${\text{CH}}_{{a_{531} }} {\text{O}}_{{a_{551} }} {\text{N}}_{{a_{546} }} {\text{S}}_{{a_{563} }} + (1 - a_{551} ){\text{N}}_{2} {\text{O}} \leftrightarrow \left( {\frac{{a_{531} }}{2} - a_{563} } \right){\text{H}}_{2} + {\text{CO}} + \left( {1 + \frac{{a_{34} }}{2} - \frac{{a_{33} }}{2}} \right){\text{N}}_{2} + a_{35} {\text{H}}_{2} {\text{S}}$$
(R.13)
$${\text{Tar}} \to {\text{ Char}}_{{2}}$$
(R.14)
$${\text{CO }} + {\text{ H}}_{{2}} {\text{O }} \rightleftarrows {\text{ CO}}_{{2}} + {\text{ H}}_{{2}}$$
(R.41)
$${\text{2CO}} + {\text{O}}_{{2}} \rightleftarrows {\text{2CO}}_{{2}}$$
(R.42)
$${\text{2H}}_{{2}} + {\text{O}}_{{2}} \rightleftarrows {\text{2H}}_{{2}} {\text{O}}$$
(R.43)
$${\text{CH}}_{{4}} + {\text{2O}}_{{2}} \rightleftarrows {\text{CO}}_{{2}} + {\text{2 H}}_{{2}} {\text{O}}$$
(R.44)
$${\text{2C}}_{{2}} {\text{H}}_{{6}} + {\text{7O}}_{{2}} \rightleftarrows {\text{4CO}}_{{2}} + {\text{6H}}_{{2}} {\text{O}}$$
(R.45)
$${\text{4NH}}_{{3}} + {\text{5O}}_{{2}} \rightleftarrows {\text{4NO}} + {\text{6H}}_{{2}} {\text{O}}$$
(R.46)
$${\text{2H}}_{{2}} {\text{S}} + {\text{3O}}_{{2}} \rightleftarrows {\text{2SO}}_{{2}} + {\text{2H}}_{{2}} {\text{O}}$$
(R.47)
$${\text{N}}_{{2}} + {\text{O}}_{{2}} \rightleftarrows {\text{2NO}}$$
(R.48)
$${\text{Tar}} + {\text{O}}_{{2}} \rightleftarrows {\text{Combustion}}\;{\text{Gases}}$$
(R.49)
$${\text{Tar}} \to {\text{Gases}}$$
(R.50)
$${\text{Tar}} + {\text{H}}_{{2}} \to {\text{CH}}_{{4}} + {\text{Other}}\;{\text{Light}}\;{\text{Gases}}$$
(R.51)
$${\text{C}}_{{2}} {\text{H}}_{{4}} + {\text{3O}}_{{2}} \rightleftarrows {\text{2CO}}_{{2}} + {\text{2H}}_{{2}} {\text{O}}$$
(R.52)
$${\text{2C}}_{{3}} {\text{H}}_{{6}} + {\text{9O}}_{{2}} \rightleftarrows {\text{6CO}}_{{2}} + {\text{6H}}_{{2}} {\text{O}}$$
(R.53)
$${\text{C}}_{{3}} {\text{H}}_{{8}} + {\text{5O}}_{{2}} \rightleftarrows {\text{3CO}}_{{2}} + {\text{4H}}_{{2}} {\text{O}}$$
(R.54)
$${\text{2C}}_{{6}} {\text{H}}_{{6}} + {\text{15O}}_{{2}} \rightleftarrows {\text{12CO}}_{{2}} + {\text{6H}}_{{2}} {\text{O}}$$
(R.55)
$${\text{4HCN}} + {\text{3O}}_{{2}} \rightleftarrows {\text{4CO}} + {\text{2N}}_{{2}} {\text{O}} + {\text{2H}}_{{2}}$$
(R.56)
$${\text{CH}}_{{4}} + {\text{H}}_{{2}} {\text{O }} \rightleftarrows {\text{CO}} + {\text{3H}}_{{2}}$$
(R.71)
$${\text{C}}_{{2}} {\text{H}}_{{4}} + {\text{2H}}_{{2}} {\text{O}} \rightleftarrows {\text{2CO}} + {\text{4H}}_{{2}}$$
(R.72)
$${\text{C}}_{{2}} {\text{H}}_{{6}} + {\text{2H}}_{{2}} {\text{O}} \rightleftarrows {\text{2CO}} + {\text{5H}}_{{2}}$$
(R.73)
$${\text{C}}_{{3}} {\text{H}}_{{6}} + {\text{3H}}_{{2}} {\text{O}} \rightleftarrows {\text{3CO}} + {\text{6H}}_{{2}} {\text{C}}_{{3}} {\text{H}}_{{6}} + {\text{3H}}_{{2}} {\text{O }} \rightleftarrows {\text{3CO}} + {\text{6H}}_{{2}}$$
(R.74)
$${\text{C}}_{{3}} {\text{H}}_{{8}} + {\text{3H}}_{{2}} {\text{O}} \rightleftarrows {\text{3CO}} + {\text{7H}}_{{2}}$$
(R.75)
$${\text{C}}_{{6}} {\text{H}}_{{6}} + {\text{6H}}_{{2}} {\text{O}} \rightleftarrows {\text{6CO}} + {\text{9H}}_{{2}}$$
(R-76)
$${\text{CH}}_{{4}} + {\text{CO}}_{{2}} \rightleftarrows {\text{2CO}} + {\text{2H}}_{{2}}$$
(R-77)
$${\text{2NO}}_{{2}} + {\text{2NH}}_{{3}} \rightleftarrows {\text{4NO}} + {\text{3H}}_{{2}}$$
(R.81)
$${\text{2NO}} + {\text{2NH}}_{{3}} \rightleftarrows {\text{2N}}_{{2}} {\text{O}} + {\text{3H}}_{{2}}$$
(R.82)
$${\text{3N}}_{{2}} {\text{O}} + {\text{2NH}}_{{3}} \rightleftarrows {\text{4N}}_{{2}} + {\text{3H}}_{{2}} {\text{O}}$$
(R.83)
$${\text{NO}}_{{2}} + {\text{2H}}_{{2}} \rightleftarrows {\text{NO}} + {\text{H}}_{{2}} {\text{O}}$$
(R.84)
$${\text{2NO}} + {\text{2H}}_{{2}} \rightleftarrows {\text{N}}_{{2}} {\text{O}} + {\text{H}}_{{2}} {\text{O}}$$
(R.85)
$${\text{N}}_{{2}} {\text{O}} + {\text{H}}_{{2}} \rightleftarrows {\text{N}}_{{2}} + {\text{H}}_{{2}} {\text{O}}$$
(R.86)
$${\text{NO}}_{{2}} + {\text{CO}} \rightleftarrows {\text{NO}} + {\text{CO}}_{{2}}$$
(R.87)
$${\text{2NO}} + {\text{CO}} \rightleftarrows {\text{N}}_{{2}} {\text{O}} + {\text{CO}}_{{2}}$$
(R.88)
$${\text{N}}_{{2}} {\text{O}} + {\text{CO}} \rightleftarrows {\text{N}}_{{2}} + {\text{CO}}_{{2}}$$
(R.89)
$${\text{NH}}_{{3}} + {\text{CO}} \rightleftarrows {\text{HCN}} + {\text{H}}_{{2}} {\text{O}}$$
(R.90)
$${\text{2N}}_{{2}} + {\text{O}}_{{2}} \rightleftarrows {\text{2N}}_{{2}} {\text{O}}$$
(R.91)
$${\text{2N}}_{{2}} {\text{O}} + {\text{O}}_{{2}} \rightleftarrows {\text{4NO}}$$
(R.92)
$${\text{2NO}} + {\text{O}}_{{2}} \rightleftarrows {\text{2NO}}_{{2}}$$
(R.93)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, A.O., de Souza-Santos, M.L. Mitigation of greenhouse gas emissions from power generation through cofiring coal and raw glycerol: a theoretical feasibility study. Int J Energy Environ Eng 14, 905–920 (2023). https://doi.org/10.1007/s40095-022-00555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00555-9

Keywords

Navigation