Skip to main content

Advertisement

Log in

Hybrid renewable energy systems for a remote community in a high mountain plateau

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

A hybrid renewable energy system (HRES) is a promising power system for supplying electricity to remote communities. In this paper, four configurations of HRESs with energy storage have been designed and optimized in hybrid optimization model for electric renewable (HOMER) software for a remote community of Balnasari Qani village in Ghazni province, Afghanistan, upon on-site visit to determine the required electrical load and available energy resources. The site is located in a high mountain plateau and has potential to set up off-grid HRESs using solar, wind, and biomass resources. The optimized system is proposed to meet the electricity demands for 300 families. Results indicated that a HRES consisting of solar photovoltaic–biomass–diesel is the most optimal solution. This system is able to provide electricity at a levelized cost of 0.340 $/kWh with a net present cost of 411,491 $. Sensitivity analysis with parametric studies on the primary load suggested wind might not be a suitable energy source at the location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

HOMER:

Hybrid optimization model for electric renewable

HRES:

Hybrid renewable energy system

c :

Weibull scale factor (m/s)

C annual,tot :

Total annualized cost ($)

COE:

Cost of electricity ($/kWh)

CRF:

Capital recovery factor

E :

Electrical load (kWh)

f PV :

Derating factor of PV panel

F(v):

Frequency distribution of wind speed

G T :

Incident global solar radiation on panel area (kW/m2)

i :

Annual interest rate (%)

k :

Weibull shape factor

NPC:

Net present cost ($)

P PV :

Power output of PV (kW)

R proj :

Project lifetime (years)

U anemometer :

Wind speed at anemometer height (m/s)

U hub :

Wind speed at turbine hub height (m/s)

v :

Wind speed (m/s)

Y :

Rated capacity of PV panel (kW)

z 0 :

Surface roughness length (m)

z nemometer :

Anemometer height (m)

z hub :

Hub height of wind turbine (m)

References

  1. Dincer, I.: Environmental impacts of energy. Energy Policy 27(14), 845–854 (1999). https://doi.org/10.1016/S0301-4215(99)00068-3

    Article  Google Scholar 

  2. Dincer, I.: Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 4(2), 157–175 (2000). https://doi.org/10.1016/S1364-0321(99)00011-8

    Article  Google Scholar 

  3. Lian, J., Zhang, Y., Ma, C., Yang, Y., Chaima, E.: A review on recent sizing methodologies of hybrid renewable energy systems. Energy Convers. Manag. 199(August), 112027 (2019). https://doi.org/10.1016/j.enconman.2019.112027

    Article  Google Scholar 

  4. Khare, V., Nema, S., Baredar, P.: Solar-wind hybrid renewable energy system: a review. Renew. Sustain. Energy Rev. 58, 23–33 (2016). https://doi.org/10.1016/j.rser.2015.12.223

    Article  Google Scholar 

  5. Salehin, S., Islam, A. K. M. S., Hoque, R., Rahman, M., Hoque, A., Manna, E.: Optimized model of a solar PV-biogas-diesel hybrid energy system for Adorsho Char island, Bangladesh. In: Proceedings of 2014 3rd International Conference on the Developments in Renewable Energy Technology, ICDRET 2014, (2014)

  6. Salehin, S., Rahman, M.M., Islam, A.K.M.S.: Techno-economic feasibility study of a solar PV-diesel system for applications in Northern part of Bangladesh. Int. J. Renew. Energy Res. 5(4), 1220–1229 (2015). https://doi.org/10.20508/ijrer.26155

    Article  Google Scholar 

  7. Mohammed, Y.S., Mustafa, M.W., Bashir, N.: Hybrid renewable energy systems for off-grid electric power: review of substantial issues. Renew. Sustain. Energy Rev. 35, 527–539 (2014). https://doi.org/10.1016/j.rser.2014.04.022

    Article  Google Scholar 

  8. Jamal, T., Salehin S.: Hybrid renewable energy sources power systems, In: Hybrid Renewable Energy Systems and Microgrids, pp. 179–214. Elsevier, (2021)

  9. Kaldellis, J.K., Vlachos, G.T.: Optimum sizing of an autonomous wind-diesel hybrid system for various representative wind-potential cases. Appl. Energy 83(2), 113–132 (2006). https://doi.org/10.1016/j.apenergy.2005.01.003

    Article  Google Scholar 

  10. Ibrahim, H., Younès, R., Ilinca, A., Dimitrova, M., Perron, J.: Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas. Appl. Energy 87(5), 1749–1762 (2010). https://doi.org/10.1016/j.apenergy.2009.10.017

    Article  Google Scholar 

  11. Salehin, S., Ferdaous, M.T., Chowdhury, R.M., Shithi, S.S., Rofi, M.S.R.B., Mohammed, M.A.: Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis. Energy 112, 729–741 (2016). https://doi.org/10.1016/j.energy.2016.06.110

    Article  Google Scholar 

  12. Sebastián, R., Alzola, R.P.: Simulation of an isolated wind diesel system with battery energy storage. Electric Power Syst. Res. 81(2), 677–686 (2011). https://doi.org/10.1016/j.epsr.2010.10.033

    Article  Google Scholar 

  13. Kazem, H.A., Al-Badi, H.A.S., Al Busaidi, A.S., Chaichan, M.T.: Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environ. Dev. Sustain. 19(5), 1761–1778 (2017). https://doi.org/10.1007/s10668-016-9828-1

    Article  Google Scholar 

  14. Mishra, S., Panigrahi, C.K., Kothari, D.P.: Design and simulation of a solar–wind–biogas hybrid system architecture using HOMER in India. Int. J. Ambient Energy 37(2), 184–191 (2016). https://doi.org/10.1080/01430750.2014.915886

    Article  Google Scholar 

  15. Salehin, S., et al.: Designing of an emergency energy module for relief and refugee camp situations: case study for a refugee camp in Chad-Sudan border. In: 2011 World Congress on Sustainable Technologies, WCST 2011 (2011)

  16. Sigarchian, S.G., Paleta, R., Malmquist, A., Pina, A.: Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system-case study Kenya. Energy 90, 1830–1841 (2015). https://doi.org/10.1016/j.energy.2015.07.008

    Article  Google Scholar 

  17. Kenfack, J., Neirac, F.P., Tatietse, T.T., Mayer, D., Fogue, M., Lejeune, A.: Microhydro-PV-hybrid system: sizing a small hydro-PV-hybrid system for rural electrification in developing countries. Renew. Energy 34(10), 2259–2263 (2009). https://doi.org/10.1016/j.renene.2008.12.038

    Article  Google Scholar 

  18. Akinbulire, T.O., Oluseyi, P.O., Babatunde, O.M.: Techno-economic and environmental evaluation of demand side management techniques for rural electrification in Ibadan, Nigeria. Int. J. Energy Environ. Eng. 5(4), 375–385 (2014). https://doi.org/10.1007/s40095-014-0132-2

    Article  Google Scholar 

  19. Al-Zoubi, H., Al-Khasawneh, Y., Omar, W.: Design and feasibility study of an on-grid photovoltaic system for green electrification of hotels: a case study of Cedars hotel in Jordan. Int. J. Energy Environ. Eng. 12(4), 611–626 (2021). https://doi.org/10.1007/s40095-021-00406-z

    Article  Google Scholar 

  20. Dahbi, H., Aoun, N., Sellam, M.: Performance analysis and investigation of a 6 MW grid-connected ground-based PV plant installed in hot desert climate conditions. Int. J. Energy Environ. Eng. 12(3), 577–587 (2021). https://doi.org/10.1007/s40095-021-00389-x

    Article  Google Scholar 

  21. Lal, S., Raturi, A.: Techno-economic analysis of a hybrid mini-grid system for Fiji islands. Int. J. Energy Environ. Eng. 3(1), 1–10 (2012). https://doi.org/10.1186/2251-6832-3-10

    Article  Google Scholar 

  22. Malik, P., Awasthi, M., Sinha, S.: Techno-economic analysis of decentralized biomass energy system and CO2 reduction in the Himalayan region. Int. J. Energy Environ. Eng. 12(2), 239–249 (2021). https://doi.org/10.1007/s40095-020-00370-0

    Article  Google Scholar 

  23. Ahmadzai, S., McKinna, A.: Afghanistan electrical energy and trans-boundary water systems analyses: challenges and opportunities. Energy Rep. 4, 435–469 (2018). https://doi.org/10.1016/j.egyr.2018.06.003

    Article  Google Scholar 

  24. Jahangiri, M., Haghani, A., Mostafaeipour, A., Khosravi, A., Raeisi, H.A.: Assessment of solar-wind power plants in Afghanistan: a review. Renew. Sustain. Energy Rev. 99, 169–190 (2019). https://doi.org/10.1016/j.rser.2018.10.003

    Article  Google Scholar 

  25. Afghan Energy Information Center: “Annual Production Report 2011,” (2012)

  26. Sadiqi, M., Pahwa, A., Miller, R. D.: “Basic design and cost optimization of a hybrid power system for rural communities in Afghanistan.” In: 2012 North American Power Symposium (NAPS), pp. 1–6, (2012). https://doi.org/10.1109/NAPS.2012.6336333

  27. Milbrandt, A., Overend, R.: Assessment of Biomass Resources in Afghanistan Assessment of Biomass Resources in Afghanistan, Nrel, (2011)

  28. “Google Earth: Available: https://earth.google.com/web. [Accessed: 18-Apr-2021]

  29. Rene, E., Paul, W., Stackhouse, J., DeYoung, R. J.: RETScreen® Plus software tutorial. Natl Aeronaut Sp. Adm, pp. 3–27, (2014)

  30. Homer Energy: “Homer Pro,” Man. Homer Energy, (2019)

  31. Nasir, I.M., Mohd Ghazi, T.I., Omar, R.: Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng. Life Sci. 12(3), 258–269 (2012). https://doi.org/10.1002/elsc.201100150

    Article  Google Scholar 

  32. Nie, E., He, P., Zhang, H., Hao, L., Shao, L., Lü, F.: How does temperature regulate anaerobic digestion? Renew. Sustain. Energy Rev. 150, 111453 (2021). https://doi.org/10.1016/j.rser.2021.111453

    Article  Google Scholar 

  33. Zhang, J., et al.: Enhancing biogas production from livestock manure in solid-state anaerobic digestion by sorghum-vinegar residues. Environ. Technol. Innov. 26, 102276 (2022). https://doi.org/10.1016/j.eti.2022.102276

    Article  Google Scholar 

  34. Paul, S., Dutta, A.: Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl. 130, 164–174 (2018). https://doi.org/10.1016/J.RESCONREC.2017.12.005

    Article  Google Scholar 

  35. Karmakar, S., NKetia, M., Laguë, C., Agnew, J.: Development of expert system modeling based decision support system for swine manure management. Comput. Electron. Agric. 71(1), 88–95 (2010). https://doi.org/10.1016/j.compag.2009.12.009

    Article  Google Scholar 

  36. Jekayinfa, S.O., Orisaleye, J.I., Pecenka, R.: An assessment of potential resources for biomass energy in Nigeria. Resources 9(8), 92 (2020). https://doi.org/10.3390/resources9080092

    Article  Google Scholar 

  37. Aggarwal, M., Gupta, V.: “Biogas as future prospect for energy dependency and rural prosperity in India: statistical analysis and economic impact”. In: 2009 IEEE Systems and Information Engineering Design Symposium, SIEDS 2009, (2009). https://doi.org/10.1109/SIEDS.2009.5166150

  38. Swedish Gas Center: “Basic Data on Biogas - Sweden,” (2007)

  39. Lambert, T., Gilman, P., Lilienthal, P.: “Micropower System Modeling with Homer,” In: Integration of Alternative Sources of Energy, Hoboken, pp. 379–418. John Wiley & Sons, Inc., NJ, USA, (2006),

  40. “Global Petrol Prices: Diesel Prices.”. Available: https://www.globalpetrolprices.com/Afghanistan/diesel_prices/. [Accessed: 29-Dec-2020]

  41. 6 CS 25P | Rolls Battery.: Available: https://rollsbattery.com/battery/6-cs-25p/. [Accessed: 29-Dec-2020].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadman Mahmud.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, S., Kaihan, M.K., Salehin, S. et al. Hybrid renewable energy systems for a remote community in a high mountain plateau. Int J Energy Environ Eng 13, 1335–1348 (2022). https://doi.org/10.1007/s40095-022-00494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00494-5

Keywords

Navigation