Skip to main content
Log in

Near-term, national solar capacity factor forecasts aided by trend attributes and artificial intelligence

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

An attribute technique is applied to forecast countrywide solar capacity. Attributes relate to the prior 12 h of a univariate, hourly time series. The approach avoids uncertainties relating to weather-related variables averaged at the country level. It captures impacts of system curtailments due to abnormal market conditions or grid-offtake limitations. Fifteen attributes relating to each hourly record are input to machine/deep learning (ML/DL) models. 43,824 h of solar capacity factor for Britain from 2015 to 2019 is evaluated. Fifteen ML/DL models are trained with 2015–2018 data with cross-validation. Trained models are then applied to forecast unseen 2019 hourly data. The ML/DL model forecast accuracy is compared with that of ARIMA and regression models. Extreme gradient boosting, random forest and adaptive boosting models outperform ARIMA and regression methods in forecasts for hours t0 to t + 12. Those three ML models are more accurate and faster to execute than six DL models evaluated. Suboptimal convergence and/or overfitting hinder the forecasts of DL models with unseen data. A transparent multi-linear regression model is used to identifying attribute influences on the different time period forecasts. The trend attributes are shown to influence the forecasts for different hours ahead in distinct ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sobri, S., Koohi-Kamali, S., Rahim, N.A.: Solar photovoltaic generation forecasting methods: a review. Energy Convers. Manag. 156, 459–497 (2018). https://doi.org/10.1016/j.enconman.2017.11.019

    Article  Google Scholar 

  2. Badal, F.R., Das, P., Sarker, S.K., Das, S.K.: A survey on control issues in renewable energy integration and microgrid. Prot. Control Mod. Power Syst. 4(1), 8 (2019)

    Article  Google Scholar 

  3. Gupta, R., Sossan, F., Paolone, M.: Countrywide PV hosting capacity and energy storage requirements for distribution networks: the case of Switzerland. Appl. Energy 281, 116010 (2021). https://doi.org/10.1016/j.apenergy.2020.116010

    Article  Google Scholar 

  4. Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F.J., Antonanzas-Torres, F.: Review of photovoltaic power forecasting. Sol. Energy 15, 78–111 (2016)

    Article  Google Scholar 

  5. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 1, 569–582 (2017)

    Article  Google Scholar 

  6. Das, U.K., Tey, K.S., Seyedmahmoudian, M., Mekhilef, S., Idris, M.Y.I., Van Deventer, W., et al.: Forecasting of photovoltaic power generation and model optimization: a review. Renew. Sustain. Energy Rev. 81, 912–928 (2018)

    Article  Google Scholar 

  7. Inman, R.H., Pedro, H.T.C., Coimbra, C.F.M.: Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 39(6), 535–576 (2013)

    Article  Google Scholar 

  8. Bergin, M.H., Ghoroi, C., Dixit, D., Schauer, J.J., Shindell, D.: Large reductions in solar energy production due to dust and particulate air pollution. Environ. Sci. Technol. Lett. (2017). https://doi.org/10.1021/acs.estlett.7b00197

    Article  Google Scholar 

  9. Rana, M., Koprinska, I., Agelidis, V.G.: Solar power forecasting using weather type clustering and ensembles of neural networks. In: International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, pp. 4962–4969 (2016)

  10. O’Shaughnessya, E., Crucea, J.R., Xu, K.: Too much of a good thing? Global trends in the curtailment of solar PV. Sol. Energy 208, 1068–1077 (2020). https://doi.org/10.1016/j.solener.2020.08.075

    Article  Google Scholar 

  11. Wood, D.A.: German solar power generation data mining and prediction with transparent open box learning network integrating weather, environmental and market variables. Energy Convers. Manag. 196, 354–369 (2019). https://doi.org/10.1016/j.enconman.2019.05.114

    Article  Google Scholar 

  12. Alsharif, M.H., Younis, M.K., Kim, J.: Time series ARIMA model for prediction of daily and monthly average global solar radiation: the case study of Seoul, South Korea. Symmetry 11, 240 (2019). https://doi.org/10.3390/sym11020240

    Article  Google Scholar 

  13. Atique, S., Noureen, S., Roy, V., Subburaj, V., Bayne, S., Macfie, J.: Forecasting of total daily solar energy generation using ARIMA: a case study. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0114–0119 (2019). https://doi.org/10.1109/CCWC.2019.8666481

  14. Kushwaha, V., Pindoriya, N.M.: Very short-term solar PV generation forecast using SARIMA model: a case study. In: 7th International Conference on Power Systems, pp. 430–435 (2017). https://doi.org/10.1109/ICPES.2017.8387332

  15. Soufiane, G., Ouafia, F., Ahmed, A.: Solar power time series prediction using wavelet analysis. Int. J. Renew. Energy Res. 10(4), 1764–1773 (2020)

    Google Scholar 

  16. Qian, Z., Pei, Y., Zareipour, H., Chen, N.: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl. Energy 235(1), 939–953 (2019). https://doi.org/10.1016/j.apenergy.2018.10.080

    Article  Google Scholar 

  17. Mandal, P., Madhira, S.T.S., Ul Haque, A., Meng, J., Pineda, R.L.: Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Comput. Sci. 12, 332–337 (2012). https://doi.org/10.1016/j.procs.2012.09.080

    Article  Google Scholar 

  18. Kushwaha, V., Pindoriya, N.M.: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast. Renew. Energy 140, 124–139 (2019)

    Article  Google Scholar 

  19. El Hendouzi, A., Bourouhou, A.: Solar photovoltaic power forecasting. J. Electr. Comput. Eng. 2020, 8819925 (2020). https://doi.org/10.1155/2020/8819925

    Article  Google Scholar 

  20. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M.D.: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sustain. Energy Rev. 124, 109792 (2020). https://doi.org/10.1016/j.rser.2020.109792

    Article  Google Scholar 

  21. Golestaneh, F., Pinson, P., Gooi, H.B.: Very short-term nonparametric probabilistic forecasting of renewable energy generation—with application to solar energy. IEEE Trans Power Syst. 99, 3850–3863 (2016). https://doi.org/10.1109/TPWRS.2015.2502423

    Article  Google Scholar 

  22. Abuella, M., Chowdhury, B.: Solar power probabilistic forecasting by using multiple linear regression analysis. In: SoutheastCon 2015, pp. 1–5 (2015). https://doi.org/10.1109/SECON.2015.7132869

  23. Khatib, T., Mohamed, A., Sopian, K., Mahmoud, M.: Solar energy prediction for Malaysia using artificial neural networks. Int. J. Energy 6(1), 1–16 (2012)

    Google Scholar 

  24. Alfadda, A., Adhikari, R., Kuzlu, M., Rahman, S.: Hour-ahead solar PV power forecasting using SVR based approach. In: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, pp. 1–5 (2017)

  25. Meng, M., Song, C.: Daily photovoltaic power generation forecasting model based on random forest algorithm for north China in winter. Sustainability 12, 2247 (2020). https://doi.org/10.3390/su12062247

    Article  Google Scholar 

  26. Wang, J., Li, P., Ran, R., Che, Y., Zhou, Y.: A short-term photovoltaic power prediction model based on the gradient boost decision tree. Appl. Sci. 8, 689 (2018). https://doi.org/10.3390/app8050689

    Article  Google Scholar 

  27. Perveen, G., Rizwan, M., Goel, N.: An ANFIS-based model for solar energy forecasting and its smart grid application. Eng. Rep. 1, e12070 (2019). https://doi.org/10.1002/eng2.12070

    Article  Google Scholar 

  28. Ramli, N.A., Hamid, M.F.A., Azhan, N.H., Ishak, M.A.A.: Solar power generation prediction by using k-nearest neighbor method. In: AIP Conference Proceedings, p. 020116 (2019). https://doi.org/10.1063/1.5118124

  29. Wood, D.A.: Solar plus wind country-wide electrical power forecasts across successive years by optimized data matching. Int. J. Energy Environ. Eng. 11, 377–394 (2020). https://doi.org/10.1007/s40095-020-00343-3

    Article  Google Scholar 

  30. Gensler, A., Henze, J., Sick, B., Raabe, N.: Deep learning for solar power forecasting—an approach using autoencoder and LSTM neural networks. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2858–2865 (2016)

  31. Gao, B., Huang, X., Shi, J., Tai, Y., Xiao, R.: Predicting day-ahead solar irradiance through gated recurrent unit using weather forecasting data. J. Renew. Sustain. Energy 11, 043705 (2019). https://doi.org/10.1063/1.5110223

    Article  Google Scholar 

  32. Suresh, V., Janik, P., Rezmer, J., Leonowicz, Z.: Forecasting solar PV output using convolutional neural networks with a sliding window algorithm. Energies 13(3), 723 (2020). https://doi.org/10.3390/en13030723

    Article  Google Scholar 

  33. Alkhayat, G., Mehmood, R.: A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI 4, 100060 (2021). https://doi.org/10.1016/j.egyai.2021.100060

    Article  Google Scholar 

  34. Statsmodel: Statistical models in Python: seasonal decompose (2022). https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.seasonal_decompose.html. Accessed 31st Jan 2022

  35. SciKit Learn: Supervised and unsupervised machine learning models in Python (2022). https://scikit-learn.org/stable/. Accessed 31st Jan 2022

  36. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Netw. 61, 32–48 (2015). https://doi.org/10.1016/j.neunet.2014.10.001

    Article  MATH  Google Scholar 

  37. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 513–529 (2016). https://doi.org/10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  38. Subba Rao, S.: An alternative perspective on stochastic coefficient regression models. In: Subba Rao, T., Subba Rao, S. (eds.) Chapter 15, Handbook of Statistics: 30, Time Series Analysis: Methods and Applications, pp. 445–474. Elsevier, Amsterdam (2012). https://doi.org/10.1016/B978-0-444-53858-1.00015-6

    Chapter  Google Scholar 

  39. TensorFlow: Deep learning models in Python (2022). https://www.tensorflow.org/guide/keras/sequential_model. Accessed 31st Jan 2022

  40. BayesSearchCV: Bayesian optimization of hyperparameters by SciKit optimization (2022). https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html. Accessed 31st Jan 2022

  41. Sun, W., Zhang, T., Tao, R., Wang, A.: Short-term photovoltaic power prediction modeling based on AdaBoost algorithm and Elman. In: 10th International Conference on Power and Energy Systems, pp. 184–188 (2020). https://doi.org/10.1109/ICPES51309.2020.9349730

  42. Tan, J., Deng, C., Yang, W., Liang, N., Li, F.: Ultra-short-term photovoltaic power forecasting in microgrid based on Adaboost clustering. Autom. Electr. Power Syst. 41(21), 33–39 (2017). https://doi.org/10.7500/AEPS20170217006

    Article  Google Scholar 

  43. Li, G., Xie, S., Wang, B., Xin, J., Li, Y., Du, S.: Photovoltaic power forecasting with a hybrid deep learning approach. IEEE Access 8, 175871–175880 (2020). https://doi.org/10.1109/ACCESS.2020.3025860

    Article  Google Scholar 

  44. Detyniecki, M., Marsala, C., Krishnan, A., Siegel, M.: Weather-based solar energy prediction. In: IEEE World Congress on Computational Intelligence June, 10–15 2012 Brisbane, Australia (2012)

  45. Rahul, A., Gupta, A., Bansal, A., Roy, K.: Solar energy prediction using decision tree regressor. In: 5th International Conference on Intelligent Computing and Control Systems, pp. 489–495 (2021). https://doi.org/10.1109/ICICCS51141.2021.9432322

  46. Jing, B., Qian, Z., Pei, Y., Wang, J.: Ultra-short-term PV power forecasting based on ELM segmentation mode. In: The 6th International Conference on Renewable Power Generation Journal of Engineering, vol. 13, pp. 2564–2568 (2017). https://doi.org/10.1049/joe.2017.0790

  47. Sahu, R.K., Shaw, B., Nayak, J.R., Shashikant, A.: Short/medium term solar power forecasting of Chhattisgarh state of India using modified TLBO optimized ELM. Eng. Sci. Technol. Int. J. (2021). https://doi.org/10.1016/j.jestch.2021.02.016

    Article  Google Scholar 

  48. Dairi, A., Harrou, F., Sun, Y., Khadraoui, S.: Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach. Appl. Sci. 10, 8400 (2020). https://doi.org/10.3390/app10238400

    Article  Google Scholar 

  49. Wojtkiewicz, J., Hosseini, M., Gottumukkala, R., Chambers, T.L.: Hour-ahead solar irradiance forecasting using multivariate gated recurrent units. Energies 12, 4055 (2019). https://doi.org/10.3390/en12214055

    Article  Google Scholar 

  50. Hosseini, M., Katragadda, S., Wojtkiewicz, J., Gottumukkala, R., Maida, A., Chambers, T.L.: Direct normal irradiance forecasting using multivariate gated recurrent units. Energies 13, 3914 (2020). https://doi.org/10.3390/en13153914

    Article  Google Scholar 

  51. Chen, C.R., Kartini, U.T.: K-nearest neighbor neural network models for very short-term global solar irradiance forecasting based on meteorological data. Energies 10(2), 186 (2017). https://doi.org/10.3390/en10020186

    Article  Google Scholar 

  52. Qing, X., Niu, Y.: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy 148, 461–468 (2018)

    Article  Google Scholar 

  53. Abdel-Nasser, M., Mahmoud, K.: Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 31, 2727–2740 (2019)

    Article  Google Scholar 

  54. Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., Zhang, Y.: Short term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 10(1), 841–851 (2019)

    Article  Google Scholar 

  55. Ehsan, R.M., Simon, S.P., Venkateswaran, P.R.: Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Comput. Appl. 28, 3981–3992 (2017). https://doi.org/10.1007/s00521-016-2310-z

    Article  Google Scholar 

  56. Parvez, I., Sarwat, A., Debnath, A., Olowu, T., Dastgir, M.G., Riggs, H.: Multi-layer perceptron based photovoltaic forecasting for rooftop PV applications in smart grid. In: 2020 SoutheastCon, pp. 1–6 (2020). https://doi.org/10.1109/SoutheastCon44009.2020.9249681

  57. Yadav, A.K., Malik, H.: ANN and multiple linear regression based modelling for experimental investigation of photovoltaic module maximum power production under outdoor condition of mountainous region. In: Eltamaly, A., Abdelaziz, A. (eds.) Modern maximum power point tracking techniques for photovoltaic energy systems. Green energy and technology. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-05578-3_8

    Chapter  Google Scholar 

  58. Kim, Y.S., Joo, H.Y., Kim, J.W., Jeong, S.Y., Moon, J.H.: Use of a big data analysis in regression of solar power generation on meteorological variables for a Korean solar power plant. Appl. Sci. 11, 1776 (2021). https://doi.org/10.3390/app11041776

    Article  Google Scholar 

  59. Tato, J.H., Brito, M.C.: Using smart persistence and random forests to predict photovoltaic energy production. Energies 12, 100 (2019). https://doi.org/10.3390/en12010100

    Article  Google Scholar 

  60. Chen, J.L., Liu, H.B., Wu, W.: Estimation of monthly solar radiation from measured temperatures using support vector machines. Renew. Energy 36(1), 413–420 (2011)

    Article  Google Scholar 

  61. Fentis, A., Bahatti, L., Mestari, M., Chouri, B.: Short-term solar power forecasting using support vector regression and feed-forward NN. In: 15th IEEE International New Circuits and Systems Conference, pp. 405–408 (2017). https://doi.org/10.1109/NEWCAS.2017.8010191

  62. Buwei, W., Jianfeng, C., Bo, W., Shuanglei, F.: A solar power prediction using support vector machines based on multi-source data fusion. In: 2018 International Conference on Power System Technology, pp. 4573–4577 (2018). https://doi.org/10.1109/POWERCON.2018.8601672

  63. Aguilar Madrid, E., Antonio, N.: Short-term electricity load forecasting with machine learning. Information 12, 50 (2021). https://doi.org/10.3390/info12020050

    Article  Google Scholar 

  64. NASA: MERRA-2 database from the National Aeronautics and Space Administration satellites (2022). www.renewables.ninja and https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. Accessed 2nd Feb 2022

  65. Fara, L., Diaconu, A., Craciunescu, D., Fara, S.: Forecasting of energy production for photovoltaic systems based on ARIMA and ANN advanced models. Int. J. Photoenergy 2021, 6777488 (2021). https://doi.org/10.1155/2021/6777488

    Article  Google Scholar 

  66. Mbaye, A., Ndiaye, M., Ndione, D., Diaw, M., Traoré, V., et al.: ARMA model for short-term forecasting of solar potential: application to a horizontal surface on Dakar site. Collaborating Academics–International Press 4(1), (2019). https://doi.org/10.23647/ca.md20191103. hal-02151290. https://hal.archives-ouvertes.fr/hal-02151290

Download references

Funding

This research did not receive any specific grant or financial assistance from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wood.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest related to the topics addressed in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Forecasting accuracy performance metrics calculated for this study.


Root mean squared error

$${\text{RMSE}} = \left[ {\frac{1}{n}\sum\limits_{i = 1}^{n} {((X_{i} ) - (Y_{i} ))^{2} } } \right]^{\frac{1}{2}}$$
(A1)

Mean absolute error

$${\text{MAE}} = \frac{1}{n}\sum\limits_{i = 1}^{n} {\left| {X_{i} - Y_{i} } \right|}$$
(A2)

Coefficient of determination

$$R^{2} = \left[ {\frac{{\sum\nolimits_{i = 1}^{n} {(X_{i} - X_{{{\text{mean}}}} )(Y_{i} - Y_{{{\text{mean}}}} )} }}{{\sqrt {\sum\nolimits_{i = 1}^{n} {(X_{i} - X_{{{\text{mean}}}} )^{2} \sum\nolimits_{i = 1}^{n} {(Y_{i} - Y_{{{\text{mean}}}} )^{2} } } } }}} \right]$$
(A3)

where Xi = recorded value for data record i; Yi = forecast value for data record i in the subset being considered; n = total number of data records being forecast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, D.A. Near-term, national solar capacity factor forecasts aided by trend attributes and artificial intelligence. Int J Energy Environ Eng 13, 1129–1146 (2022). https://doi.org/10.1007/s40095-022-00488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00488-3

Keywords

Navigation