Skip to main content

Advertisement

Log in

Performance analysis and investigation of a 6 MW grid-connected ground-based PV plant installed in hot desert climate conditions

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

This paper experimentally analyzed and investigated 12-months of a 6 MW grid-connected photovoltaic (PV) plant mounted on a ground-base in Zaouiet Kounta (27°13′00" N, 0°12′00" W), southern Algeria. According to the Köppen-Geiger climate classification, the Adrar region is a hot desert climate. The performance ratio and several main normalized parameters (system efficiency, capacity factor, and system and total losses) were calculated according to IEC 61,724 standards. Additionally, the assessment and analysis of the degradation rate were limited to a one-year data. The results can be used to improve the prediction of future large-scale photovoltaic plants mounted in hot desert climates and could help in designing, operating and maintaining new grid-connected systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

I p :

Maximum power current (A)

P p :

Maximum power (W)

V p :

Maximum power voltage (V)

V oc :

Open circuit voltage (V)

I sc :

Short circuit current (A)

AC:

Alternating current (A)

BWh:

Hot desert climates

BWk:

Arid Desert Cold arid

BSk:

Arid steppe cold arid

Csa:

Warm temperature summer dry hot summer

E :

Total energy output (kW h)

DC:

Direct current (A)

DR:

Degradation rate (%)

NOCT:

Nominal operating cell temperature (°C)

PV:

Photovoltaic

PR:

Performance ratio (%)

STC:

Standard test condition (25 °C and 1000 W/m2)

CF:

Array capture loss (h/day)

L C :

Capture loss (h/day)

L S :

System loss (h/day)

L T :

Total loss (h/day)

Y A :

Array yield (h/day)

Y F :

Final yield (h/day)

Y R :

Reference yield (h/day

G t :

In-plane radiation (W/m2)

G STC :

Solar radiation under STC (1000 W/m2)

H t :

In-plane irradiation (kWh/m2)

T c :

Module temperature (°C)

T NOCT :

NOCT temperature (°C)

T amb :

Ambient temperature (°C)

η sys :

System efficiency (%

α P :

Temperature coefficient of Pp (%/°C)

α Isc :

Temperature coefficient of Isc (%/°C)

α Voc :

Temperature coefficient of Voc (%/°C)

τ :

Recording interval (τ = 15 min

References

  1. Malvoni, M., Leggieri, A., Maggiotto, G., Congedo, P.M., De Giorgi, M.G.: Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy Convers. Manag. 145, 169–181 (2017). https://doi.org/10.1016/J.ENCONMAN.2017.04.075

    Article  Google Scholar 

  2. Aoun, N., Bouchouicha, K.: Estimating daily global solar radiation by day of the year in Algeria. Eur. Phys. J. Plus. 132, 1–12 (2017). https://doi.org/10.1140/epjp/i2017-11495-7

    Article  Google Scholar 

  3. Aoun, N., Bouchouicha, K., Bailek, N.: Seasonal performance comparison of four electrical models of monocrystalline PV module operating in a harsh environment. IEEE J. Photovoltaics. 9, 1057–1063 (2019). https://doi.org/10.1109/JPHOTOV.2019.2917272

    Article  Google Scholar 

  4. Tahri, F., Tahri, A., Oozeki, T.: Performance evaluation of grid-connected photovoltaic systems based on two photovoltaic module technologies under tropical climate conditions. Energy Convers. Manag. 165, 244–252 (2018). https://doi.org/10.1016/j.enconman.2018.03.065

    Article  Google Scholar 

  5. Malvoni, M., Kumar, N.M., Chopra, S.S., Hatziargyriou, N.: Performance and degradation assessment of large-scale grid-connected solar photovoltaic power plant in tropical semi-arid environment of India. Sol. Energy. 203, 101–113 (2020). https://doi.org/10.1016/j.solener.2020.04.011

    Article  Google Scholar 

  6. Castro, M., Delgado, A., Argul, F.J., Colmenar, A., Yeves, F., Peire, J.: Grid-connected PV buildings: analysis of future scenarios with an example of Southern Spain. Sol. Energy. 79, 86–95 (2005). https://doi.org/10.1016/j.solener.2004.09.022

    Article  Google Scholar 

  7. de Lima, L.C., de AraújoFerreira, L., de LimaMorais, F.H.B.: Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy Sustain. Dev. 37, 79–85 (2017). https://doi.org/10.1016/j.esd.2017.01.004

    Article  Google Scholar 

  8. Ayompe, L.M., Duffy, A., McCormack, S.J., Conlon, M.: Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 52, 816–825 (2011). https://doi.org/10.1016/j.enconman.2010.08.007

    Article  Google Scholar 

  9. Savvakis, N., Tsoutsos, T.: Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete. Energy 90, 1435–1455 (2015). https://doi.org/10.1016/j.energy.2015.06.098

    Article  Google Scholar 

  10. Al-Badi, A.H.: Measured performance evaluation of a 1.4 kW grid connected desert type PV in Oman. Energy Sustain. Dev. 47, 107–113 (2018). https://doi.org/10.1016/j.esd.2018.09.007

    Article  Google Scholar 

  11. Adaramola, M.S., Vågnes, E.E.T.: Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions. Energy Convers. Manag. 90, 458–465 (2015). https://doi.org/10.1016/j.enconman.2014.11.028

    Article  Google Scholar 

  12. Adaramola, M.S.: Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance. Energy Convers. Manag. 101, 85–93 (2015). https://doi.org/10.1016/j.enconman.2015.05.038

    Article  Google Scholar 

  13. Al-Otaibi, A., Al-Qattan, A., Fairouz, F., Al-Mulla, A.: Performance evaluation of photovoltaic systems on Kuwaiti schools’ rooftop. Energy Convers. Manag. 95, 110–119 (2015). https://doi.org/10.1016/j.enconman.2015.02.039

    Article  Google Scholar 

  14. Micheli, D., Alessandrini, S., Radu, R., Casula, I.: Analysis of the outdoor performance and efficiency of two grid connected photovoltaic systems in northern Italy. Energy Convers. Manag. 80, 436–445 (2014). https://doi.org/10.1016/j.enconman.2014.01.053

    Article  Google Scholar 

  15. Kymakis, E., Kalykakis, S., Papazoglou, T.M.: Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Convers. Manag. 50, 433–438 (2009). https://doi.org/10.1016/J.ENCONMAN.2008.12.009

    Article  Google Scholar 

  16. Shiva Kumar, B., Sudhakar, K.: Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Rep. 1, 184–192 (2015). https://doi.org/10.1016/j.egyr.2015.10.001

    Article  Google Scholar 

  17. Jamil, I., Zhao, J., Zhang, L., Jamil, R., Rafique, S.F.: Evaluation of energy production and energy yield assessment based on feasibility, design, and execution of 3 × 50 MW grid-connected solar PV pilot project in Nooriabad. Int. J. Photoenergy. 2017, (2017). doi:https://doi.org/10.1155/2017/6429581

  18. Rehman, S., Ahmed, M.A., Mohamed, M.H., Al-Sulaiman, F.A.: Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia. Renew. Sustain. Energy Rev. 80, 319–329 (2017). https://doi.org/10.1016/j.rser.2017.05.218

    Article  Google Scholar 

  19. El HacenJed, M., Ihaddadene, R., Ihaddadene, N., ElhadjiSidi, C.E., ELBah, M.: Performance analysis of 954,809 kWp PV array of Sheikh Zayed solar power plant (Nouakchott, Mauritania). Renew. Energy Focus. 32, 45–54 (2020). https://doi.org/10.1016/j.ref.2019.11.002

    Article  Google Scholar 

  20. Congedo, P.M., Malvoni, M., Mele, M., De Giorgi, M.G.: Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 68, 1–10 (2013). https://doi.org/10.1016/J.ENCONMAN.2012.12.017

    Article  Google Scholar 

  21. Aoun, N.: Performance analysis of a 20 MW grid-connected photovoltaic installation in Adrar, South of Algeria. In: Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems. IntechOpen (2020)

  22. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F.: World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift. 15, 259–263 (2006). https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  23. Aoun, N., Chenni, R., Bouchouicha, K.: Experimental and validation of photovoltaic solar cell performance models in desert climate. (2014)

  24. Consumer, H.: Internationale International Standard. (1998)

  25. Sundaram, S., Babu, J.S.C.: Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India. Energy Convers. Manag. 100, 429–439 (2015). https://doi.org/10.1016/j.enconman.2015.04.069

    Article  Google Scholar 

  26. Allouhi, A., Saadani, R., Kousksou, T., Saidur, R., Jamil, A., Rahmoune, M.: Grid-connected PV systems installed on institutional buildings: technology comparison, energy analysis and economic performance. Energy Build. 130, 188–201 (2016). https://doi.org/10.1016/j.enbuild.2016.08.054

    Article  Google Scholar 

  27. Rehman, S., El-Amin, I.: Performance evaluation of an off-grid photovoltaic system in Saudi Arabia. Energy 46, 451–458 (2012). https://doi.org/10.1016/J.ENERGY.2012.08.004

    Article  Google Scholar 

  28. Sharma, R., Goel, S.: Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Rep. 3, 76–84 (2017). https://doi.org/10.1016/J.EGYR.2017.05.001

    Article  Google Scholar 

  29. Sharma, V., Chandel, S.S.: Performance analysis of a 190kWp grid interactive solar photovoltaic power plant in India. Energy 55, 476–485 (2013). https://doi.org/10.1016/j.energy.2013.03.075

    Article  Google Scholar 

  30. Quansah, D.A., Adaramola, M.S.: Assessment of early degradation and performance loss in five co-located solar photovoltaic module technologies installed in Ghana using performance ratio time-series regression. Renew. Energy. 131, 900–910 (2019). https://doi.org/10.1016/j.renene.2018.07.117

    Article  Google Scholar 

  31. Huang, C., Edesess, M., Bensoussan, A., Tsui, K.: Performance analysis of a grid-connected upgraded metallurgical grade silicon photovoltaic system. Energies 9, 342 (2016). https://doi.org/10.3390/en9050342

    Article  Google Scholar 

  32. Kumar, N.M., Gupta, R.P., Mathew, M., Jayakumar, A., Singh, N.K.: Performance, energy loss, and degradation prediction of roof-integrated crystalline solar PV system installed in Northern India. Case Stud. Therm. Eng. 13, 100409 (2019). https://doi.org/10.1016/J.CSITE.2019.100409

    Article  Google Scholar 

  33. Ndiaye, A., Kébé, C.M.F., Charki, A., Ndiaye, P.A., Sambou, V., Kobi, A.: Degradation evaluation of crystalline-silicon photovoltaic modules after a few operation years in a tropical environment. Sol. Energy. 103, 70–77 (2014). https://doi.org/10.1016/J.SOLENER.2014.02.006

    Article  Google Scholar 

  34. Kaplani, E.: Degradation effects in sc-Si PV modules subjected to natural and induced ageing after several years of field operation. J. Eng. Sci. Technol. Rev. 5, 18–23 (2012)

    Article  Google Scholar 

  35. Anderson, A.J.: Photovoltaic translation equations: a new approach. In: Final Subcontract Report. NREL/TP-411–20279.

  36. ElhadjSidi, C.E.B., Ndiaye, M.L., ElBah, M., Mbodji, A., Ndiaye, A., Ndiaye, P.A.: Performance analysis of the first large-scale (15 MWp) grid-connected photovoltaic plant in Mauritania. Energy Convers. Manag. 119, 411–421 (2016). https://doi.org/10.1016/J.ENCONMAN.2016.04.070

    Article  Google Scholar 

  37. Kazem, H.A., Khatib, T., Sopian, K., Elmenreich, W.: Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy Build. 82, 123–129 (2014). https://doi.org/10.1016/J.ENBUILD.2014.06.048

    Article  Google Scholar 

  38. Sahouane, N., Dabou, R., Ziane, A., Neçaibia, A., Bouraiou, A., Rouabhia, A., Mohammed, B.: Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara. Renew. Energy. 143, 1318–1330 (2019). https://doi.org/10.1016/j.renene.2019.05.086

    Article  Google Scholar 

  39. Makrides, G., Zinsser, B., Georghiou, G.E., Schubert, M., Werner, J.H.: Temperature behaviour of different photovoltaic systems installed in Cyprus and Germany. Sol. Energy Mater. Sol. Cells. 93, 1095–1099 (2009). https://doi.org/10.1016/j.solmat.2008.12.024

    Article  Google Scholar 

  40. Necaibia, A., Bouraiou, A., Ziane, A., Sahouane, N., Hassani, S., Mostefaoui, M., Dabou, R., Mouhadjer, S.: Analytical assessment of the outdoor performance and efficiency of grid-tied photovoltaic system under hot dry climate in the south of Algeria. Energy Convers. Manag. 171, 778–786 (2018). https://doi.org/10.1016/J.ENCONMAN.2018.06.020

    Article  Google Scholar 

  41. Kumar, S.S., Nagarajan, C.: Performance-economic and energy loss analysis of 80 KWp grid connected roof top transformer less photovoltaic power plant. Circuits Syst. 07, 662–679 (2016). https://doi.org/10.4236/cs.2016.76056

    Article  Google Scholar 

  42. Quansah, D.A., Adaramola, M.S., Appiah, G.K., Edwin, I.A.: Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. Int. J. Hydrogen Energy. 42, 4626–4635 (2017). https://doi.org/10.1016/J.IJHYDENE.2016.10.119

    Article  Google Scholar 

  43. Chokmaviroj, S., Wattanapong, R., Suchart, Y.: Performance of a 500 kWP grid connected photovoltaic system at Mae Hong Son Province. Thailand Renew. Energy. 31, 19–28 (2006). https://doi.org/10.1016/j.renene.2005.03.004

    Article  Google Scholar 

  44. Haibaoui, A., Hartiti, B., Elamim, A., Karami, M., Ridah, A.: Performance indicators for grid-connected PV Systems: a case study in Casablanca. Morocco. IOSR J. Electr. Electron. Eng. 12, 55–65 (2017). https://doi.org/10.9790/1676-1202015565

    Article  Google Scholar 

  45. Sidrach-de-Cardona, M., Mora López, L.: Performance analysis of a grid-connected photovoltaic system. Energy 24, 93–102 (1999). https://doi.org/10.1016/S0360-5442(98)00084-X

    Article  Google Scholar 

  46. Okello, D., Van Dyk, E.E., Vorster, F.J.: Analysis of measured and simulated performance data of a 3.2 kWp grid-connected PV system in Port Elizabeth. South Africa. Energy Convers. Manag. 100, 10–15 (2015). https://doi.org/10.1016/j.enconman.2015.04.064

    Article  Google Scholar 

  47. Ozden, T., Akinoglu, B.G., Turan, R.: Long term outdoor performances of three different on-grid PV arrays in central Anatolia—an extended analysis. Renew. Energy. 101, 182–195 (2017). https://doi.org/10.1016/j.renene.2016.08.045

    Article  Google Scholar 

  48. Bouaouadja, N., Bouzid, S., Hamidouche, M., Bousbaa, C., Madjoubi, M.: Effects of sandblasting on the efficiencies of solar panels. Appl. Energy. 65, 99–105 (2000). https://doi.org/10.1016/S0306-2619(99)00044-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouar Aoun.

Ethics declarations

Conflict of interest

The authors have no conflict of interest statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahbi, H., Aoun, N. & Sellam, M. Performance analysis and investigation of a 6 MW grid-connected ground-based PV plant installed in hot desert climate conditions. Int J Energy Environ Eng 12, 577–587 (2021). https://doi.org/10.1007/s40095-021-00389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00389-x

Keywords

Navigation