Skip to main content

Advertisement

Log in

Performance analysis of an experimental and simulated grid connected photovoltaic system in southwest Algeria

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The main purpose of the study is to examine the experimental and simulation performance of a 6 MWp grid-connected photovoltaic power plant during a specific period. A specific analysis technique was applied based on the IEC 61,724 standards to assess the effect of climatic factors. The treated data resulting from monitoring for 2 consecutive years (Jun 2017–Jun 2019) was analyzed on a daily and monthly basis in order to evaluate the performance trends of the solar PV system under climatic conditions such as an arid desert. Numerous measurement metrics are used in this respect, including the energy yields, performance ratio (PR), capacity factor (CF), and losses. The performance results obtained are compared with the PVsyst simulation, where findings of this study show that the actual data from the photovoltaic plant production closely matches the expected data collected using the PVSyst software. The average monthly yield of the PV array and the final yield were 5.1 and 4.7 h/d, respectively. The average performance ratio (PR) for the rows and the PV system was 90 and 84%, respectively. The average monthly efficiency of the PV array and the system were 12.68 and 11.75%, respectively. By comparing the results of the performance parameters of this installation with the results reported by different systems operating in various conditions, a desert climate may demonstrate to be slightly favorable. The experimental findings obtained during field operations illustrate how environmental parameters have a significant effect on both energy generation performance and system losses, where the Tm > 42 °C & PR < 70% the energy generated is relatively low even though the availability of solar irradiation, and also a correlation between the monthly average module temperature and the performance ratio with a correlation value of R2 = 0.90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A m :

PV module area (m2)

A a :

PV array area (m2)

G T :

Global in-plane solar radiation (W/m2)

H T :

Global in-plane solar insolation (kWh/m2)

T m :

Module temperature (°C)

G STC :

Solar radiation STC (KW/m2)

P AC :

AC power (kW)

P DC :

DC power (kW)

P DC ,STC :

DC power under standard test conditions (kW)

P nom :

PV nominal power (kWp)

E AC :

AC energy produced (kW h)

E DC ,D :

Daily DC energy produced (kW h)

E AC ,D :

Daily AC energy produced (kW h)

EAC ,M :

Monthly AC energy produced (kW h)

E AC ,A :

Annual AC energy produced (kW h)

CF:

Capacity factor (%),

PR:

Performance ratio (%)

Y A :

Array yield (kWh/kWp)

Y F :

Final yield (kW h/kWp)

Y R :

Reference yield (kWh/kWp)

T amb :

Ambient Temperature (°C)

RH:

Relative Humidity (%)

W s :

Wind speed (m/s)

Pa:

Atmospheric pressure (HPa)

T cell :

Cell temperature, °C

L c :

Capture losses (h/day)

L s :

System losses (h/day)

L cT :

Cell temperature losses (h/day)

η STC :

PV efficiency at standard test condition

η PV :

PV module efficiency, %

η inv :

Inverter efficiency, %

η sys :

System efficiency

η tem :

\(= 1 - { }\beta \left( {T_{c} - 25} \right)\)

PV:

Photovoltaic

sys:

System

STC:

Standard test conditions

η :

Efficiency (%)

AC:

Alternating current (A)

DC:

Direct current (A

References

  1. Mekhilef, S., Saidur, R., Safari, A.: A review on solar energy use in industries. Renew. Sustain. Energy Rev. 15, 1777–1790 (2011). https://doi.org/10.1016/j.rser.2010.12.018

    Article  Google Scholar 

  2. Shravanth Vasisht, M., Srinivasan, J., Ramasesha, S.K.: Performance of solar photovoltaic installations: effect of seasonal variations. Sol. Energy 131, 39–46 (2016). https://doi.org/10.1016/j.solener.2016.02.013

    Article  Google Scholar 

  3. Díaz-Cuevas, P., Haddad, B., Fernandez-Nunez, M.: Energy for the future: planning and mapping renewable energy. The case of Algeria. Sustain. Energy Technol. Assess. 47, 101445 (2021). https://doi.org/10.1016/J.SETA.2021.101445

    Article  Google Scholar 

  4. Stambouli, A.B., Khiat, Z., Flazi, S., Kitamura, Y.: A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renew. Sustain. Energy Rev. 16, 4445–4460 (2012). https://doi.org/10.1016/j.rser.2012.04.031

    Article  Google Scholar 

  5. Boudghene Stambouli, A.: Algerian renewable energy assessment: the challenge of sustainability. Energy Policy 39, 4507–4519 (2011). https://doi.org/10.1016/j.enpol.2010.10.005

    Article  Google Scholar 

  6. Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R., Ziane, A., Sahouane, N., Attoui, I., Mostefaoui, M., Touaba, O.: Status of renewable energy potential and utilization in Algeria. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.119011

    Article  Google Scholar 

  7. ADEME: Energies renouvelables. Energies Renouv. 12, 309–315 (2006)

  8. Ziane, A., Dabou, R., Sahouane, N., Necaibia, A., Mostefaoui, M., Bouraiou, A., Slimani, A.: Detecting partial shading in grid-connected PV station using random forest classifier. Lect. Notes Networks Syst., vol. 174, pp. 88–95. https://doi.org/10.1007/978-3-030-63846-7_10 (2021)

  9. Decker, B., Jahn, U.: Performance of 170 grid connected PV plants in Northern Germany—Analysis of yields and optimization potentials. Sol. Energy 59, 127–133 (1997). https://doi.org/10.1016/S0038-092X(96)00132-6

    Article  Google Scholar 

  10. Pietruszko, S.M., Gradzki, M.: Performance of a grid connected small PV system in Poland. Appl. Energy 74, 177–184 (2003). https://doi.org/10.1016/S0306-2619(02)00144-7

    Article  Google Scholar 

  11. Kymakis, E., Kalykakis, S., Papazoglou, T.M.: Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Convers. Manag. 50, 433–438 (2009). https://doi.org/10.1016/j.enconman.2008.12.009

    Article  Google Scholar 

  12. Makrides, G., Zinsser, B., Norton, M., Georghiou, G.: Chapter 9 performance of photovoltaics under actual operating conditions. Third Gener. Photovoltaics, pp. 201–232. https://doi.org/10.5772/27386 (2012)

  13. Sharma, V., Kumar, A., Sastry, O.S., Chandel, S.S.: Performance assessment of different solar photovoltaic technologies under similar outdoor conditions. Energy 58, 511–518 (2013). https://doi.org/10.1016/j.energy.2013.05.068

    Article  Google Scholar 

  14. Tripathi, B., Yadav, P., Rathod, S., Kumar, M.: Performance analysis and comparison of two silicon material based photovoltaic technologies under actual climatic conditions in Western India. Energy Convers. Manag. 80, 97–102 (2014). https://doi.org/10.1016/j.enconman.2014.01.013

    Article  Google Scholar 

  15. Kazem, H.A., Khatib, T., Sopian, K., Elmenreich, W.: Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy Build. 82, 123–129 (2014). https://doi.org/10.1016/j.enbuild.2014.06.048

    Article  Google Scholar 

  16. Al-Sabounchi, A.M., Yalyali, S.A., Al-Thani, H.A.: Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions. Renew. Energy 53, 71–78 (2013). https://doi.org/10.1016/j.renene.2012.10.039

    Article  Google Scholar 

  17. Al-Otaibi, A., Al-Qattan, A., Fairouz, F., Al-Mulla, A.: Performance evaluation of photovoltaic systems on Kuwaiti schools’ rooftop. Energy Convers. Manag. 95, 110–119 (2015). https://doi.org/10.1016/j.enconman.2015.02.039

    Article  Google Scholar 

  18. Dahmoun, M.E.H., Bekkouche, B., Sudhakar, K., Guezgouz, M., Chenafi, A., Chaouch, A.: Performance evaluation and analysis of grid-tied large scale PV plant in Algeria. Energy Sustain. Dev. 61, 181–195 (2021). https://doi.org/10.1016/j.esd.2021.02.004

    Article  Google Scholar 

  19. Mondol, J.D., Yohanis, Y., Smyth, M., Norton, B.: Long term performance analysis of a grid connected photovoltaic system in Northern Ireland. Energy Convers. Manag. 47, 2925–2947 (2006). https://doi.org/10.1016/J.ENCONMAN.2006.03.026

    Article  Google Scholar 

  20. Ayompe, L.M., Duffy, A., McCormack, S.J., Conlon, M.: Measured performance of a 1.72kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 52, 816–825 (2011). https://doi.org/10.1016/j.enconman.2010.08.007

    Article  Google Scholar 

  21. Sahouane, N., Dabou, R., Ziane, A., Neçaibia, A., Bouraiou, A., Rouabhia, A., Mohammed, B.: Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.05.086

    Article  Google Scholar 

  22. Dabou, R., Bouchafaa, F., Arab, A.H., Bouraiou, A., Draou, M.D., Neçaibia, A., Mostefaoui, M.: Monitoring and performance analysis of grid connected photovoltaic under different climatic conditions in south Algeria. Energy Convers. Manag. 130, 200–206 (2016). https://doi.org/10.1016/j.enconman.2016.10.058

    Article  Google Scholar 

  23. Dobaria, B., Pandya, M., Aware, M.: Analytical assessment of 5.05 kWp grid tied photovoltaic plant performance on the system level in a composite climate of western India. Energy 111, 47–51 (2016). https://doi.org/10.1016/j.energy.2016.05.082

    Article  Google Scholar 

  24. Ozcan, O., Ersoz, F.: Project and cost-based evaluation of solar energy performance in three different geographical regions of Turkey: investment analysis application. Eng. Sci. Technol. an Int. J. 22, 1098–1106 (2019). https://doi.org/10.1016/j.jestch.2019.04.001

    Article  Google Scholar 

  25. Makrides, G., Zinsser, B., Norton, M., Georghiou, G.E., Schubert, M., Werner, J.H.: Potential of photovoltaic systems in countries with high solar irradiation (2010)

  26. Wittkopf, S., Valliappan, S., Liu, L., Ang, K.S., Cheng, S.C.J.: Analytical performance monitoring of a 142.5 kWp grid-connected rooftop BIPV system in Singapore. Renew. Energy 47, 9–20 (2012). https://doi.org/10.1016/J.RENENE.2012.03.034

    Article  Google Scholar 

  27. Kumar, M., Chandel, S.S., Kumar, A.: Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions. Energy 204, 117903 (2020). https://doi.org/10.1016/j.energy.2020.117903

    Article  Google Scholar 

  28. Ziane, A., Dabou, R., Necaibia, A., Sahouane, N., Mostefaoui, M., Bouraiou, A., Khelifi, S., Rouabhia, A., Blal, M.: Tree-based ensemble methods for predicting the module temperature of a grid-tied photovoltaic system in the desert. Int. J. Green Energy (2021). https://doi.org/10.1080/15435075.2021.1904945

    Article  Google Scholar 

  29. Dabou, R., Bouraiou, A., Ziane, A., Necaibia, A., Sahouane, N., Blal, M., Khelifi, S., Rouabhia, A., Slimani, A.: Development of autonomous monitoring and performance evaluation system of grid-tied photovoltaic station. Int. J. Hydrog. Energy 46, 30267–30287 (2021). https://doi.org/10.1016/J.IJHYDENE.2021.06.204

    Article  Google Scholar 

  30. Sundaram, S., Babu, J.S.C.: Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India. Energy Convers. Manag. 100, 429–439 (2015). https://doi.org/10.1016/j.enconman.2015.04.069

    Article  Google Scholar 

  31. Congedo, P.M., Malvoni, M., Mele, M., De Giorgi, M.G.: Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 68, 1–10 (2013). https://doi.org/10.1016/j.enconman.2012.12.017

    Article  Google Scholar 

  32. Malvoni, M., Leggieri, A., Maggiotto, G., Congedo, P.M., De Giorgi, M.G.: Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy Convers. Manag. 145, 169–181 (2017). https://doi.org/10.1016/j.enconman.2017.04.075

    Article  Google Scholar 

  33. Dahbi, H., Aoun, N., Sellam, M.: Performance analysis and investigation of a 6 MW grid—connected ground—based PV plant installed in hot desert climate conditions. Int. J. Energy Environ. Eng. (2021). https://doi.org/10.1007/s40095-021-00389-x

    Article  Google Scholar 

  34. Ziane, A., Necaibia, A., Sahouane, N., Dabou, R., Mostefaoui, M., Bouraiou, A., Khelifi, S., Rouabhia, A., Blal, M.: Photovoltaic output power performance assessment and forecasting: impact of meteorological variables. Sol. Energy 220, 745–757 (2021). https://doi.org/10.1016/j.solener.2021.04.004

    Article  Google Scholar 

  35. Abderrezzaq, Z., Ammar, N., Rachid, D., Draou, M.D.M.D., Mohamed, M., Nordine, S.: Performance analysis of a grid connected photovoltaic station in the region of Adrar. Presented at the October (2017)

  36. Ziane, A., Necaibia, A., Mostfaoui, M., Bouraiou, A., Sahouane, N., Dabou, R.: A fuzzy logic MPPT for three-phase grid-connected PV inverter. In: 2018 20th International Middle East Power Systems Conference, MEPCON 2018—Proceedings (2019)

  37. Raj, A., Gupta, M., Panda, S.: Design simulation and performance assessment of yield and loss forecasting for 100 KWp grid connected solar PV system. In: 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), pp. 528–533. IEEE (2016)

  38. Ayompe, L.M., Duffy, A., McCormack, S.J., Conlon, M.: Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Convers. Manag. 52, 816–825 (2011). https://doi.org/10.1016/j.enconman.2010.08.007

    Article  Google Scholar 

  39. Necaibia, A., Bouraiou, A., Ziane, A., Sahouane, N., Hassani, S., Mostefaoui, M., Dabou, R., Mouhadjer, S.: Analytical assessment of the outdoor performance and efficiency of grid-tied photovoltaic system under hot dry climate in the south of Algeria. Energy Convers. Manag. 171, 778–786 (2018). https://doi.org/10.1016/j.enconman.2018.06.020

    Article  Google Scholar 

  40. Ketjoy, N., Sirisamphanwong, C., Khaosaad, N.: Performance evaluation of 10 kWp photovoltaic power generator under hot climatic condition. Energy Procedia. 34, 291–297 (2013). https://doi.org/10.1016/j.egypro.2013.06.757

    Article  Google Scholar 

  41. Korsavi, S.S., Zomorodian, Z.S., Tahsildoost, M.: Energy and economic performance of rooftop PV panels in the hot and dry climate of Iran. J. Clean. Prod. 174, 1204–1214 (2018). https://doi.org/10.1016/j.jclepro.2017.11.026

    Article  Google Scholar 

  42. Alshare, A., Tashtoush, B., Altarazi, S., El-Khalil, H.: Energy and economic analysis of a 5 MW photovoltaic system in northern Jordan. Case Stud. Therm. Eng. 21, 100722 (2020). https://doi.org/10.1016/j.csite.2020.100722

    Article  Google Scholar 

  43. Ropp, M.E., Begovic, M., Rohatgi, A.: Analysis and performance assessment of the active frequency drift method of islanding prevention. IEEE Trans. Energy Convers. 14, 810–816 (1999). https://doi.org/10.1109/60.790956

    Article  Google Scholar 

  44. Vignola, F., Mavromatakis, F., Krumsick, J.: Performance of PV inverters. Am. Sol. Energy Soc. Sol. 2008, Incl. Proc. 37th ASES Annu. Conf., 33rd Natl. Passiv. Sol. Conf., 3rd Renew. Energy Policy Mark. Conf. Catch Clean Energy Wave, vol. 1, pp. 628–650 (2008)

  45. El Hacen Jed, M., Ihaddadene, R., Ihaddadene, N., Elhadji Sidi, C., Bah, M.E.: Performance analysis of 954,809 kWp PV array of Sheikh Zayed solar power plant (Nouakchott, Mauritania). Renew. Energy Focus. 32, 45–54 (2020). https://doi.org/10.1016/j.ref.2019.11.002

    Article  Google Scholar 

  46. Al-Badi, A.H.: Measured performance evaluation of a 1.4 kW grid connected desert type PV in Oman. Energy Sustain. Dev. 47, 107–113 (2018). https://doi.org/10.1016/j.esd.2018.09.007

    Article  Google Scholar 

  47. Quansah, D.A., Adaramola, M.S., Appiah, G.K., Edwin, I.A.: Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. Int. J. Hydrog. Energy 42, 4626–4635 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.119

    Article  Google Scholar 

  48. Boddapati, V., Nandikatti, A.S.R., Daniel, S.A.: Techno-economic performance assessment and the effect of power evacuation curtailment of a 50 MWp grid-interactive solar power park. Energy Sustain. Dev. 62, 16–28 (2021). https://doi.org/10.1016/j.esd.2021.03.005

    Article  Google Scholar 

  49. PVsyst—Logiciel Photovoltaïque. https://www.pvsyst.com/

  50. de Lima, L.C., de Araújo Ferreira, L., de Lima Morais, F.H.B.: Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy Sustain. Dev. 37, 79–85 (2017). https://doi.org/10.1016/j.esd.2017.01.004

    Article  Google Scholar 

  51. Cubukcu, M., Gumus, H.: Performance analysis of a grid-connected photovoltaic plant in eastern Turkey. Sustain. Energy Technol. Assess. 39, 100724 (2020). https://doi.org/10.1016/j.seta.2020.100724

    Article  Google Scholar 

  52. Aoun, N.: Performance analysis of a 20 MW grid-connected photovoltaic installation in Adrar, South of Algeria. In: Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems. IntechOpen (2020)

  53. Shukla, A.K., Sudhakar, K., Baredar, P.: Simulation and performance analysis of 110 kWpgrid-connected photovoltaic system for residential building in India: a comparative analysis of various PV technology. Energy Rep. 2, 82–88 (2016). https://doi.org/10.1016/j.egyr.2016.04.001

    Article  Google Scholar 

  54. De Miguel, A., Bilbao, J., Cazorro, J.R.S., Martin, C.: Performance analysis of a grid-connected PV system in a rural 628 site in the northwest of Spain. World Renew. Energy Congr. VII (2002)

  55. Elhadj Sidi, C.E.B., Ndiaye, M.L., El Bah, M., Mbodji, A., Ndiaye, A., Ndiaye, P.A.: Performance analysis of the first large-scale (15 MWp) grid-connected photovoltaic plant in Mauritania. Energy Convers. Manag. 119, 411–421 (2016). https://doi.org/10.1016/j.enconman.2016.04.070

    Article  Google Scholar 

  56. Haibaoui, A., Hartiti, B., Elamim, A., Karami, M., Ridah, A.: Performance indicators for grid-connected PV systems: a case study in Casablanca, Morocco. IOSR J. Electr. Electron. Eng. Ver. I(12), 2278–1676 (2017). https://doi.org/10.9790/1676-1202015565

    Article  Google Scholar 

  57. Drif, M., Pérez, P.J.J., Aguilera, J., Almonacid, G., Gomez, P., de la Casa, J., Aguilar, J.D.D.: Univer project. A grid connected photovoltaic system of 200 kWp at Jaén University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 91, 670–683 (2007). https://doi.org/10.1016/j.solmat.2006.12.006

    Article  Google Scholar 

  58. Sharma, R., Goel, S.: Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Rep. 3, 76–84 (2017). https://doi.org/10.1016/j.egyr.2017.05.001

    Article  Google Scholar 

  59. Yadav, S.K., Bajpai, U.: Performance evaluation of a rooftop solar photovoltaic power plant in Northern India. Energy Sustain. Dev. 43, 130–138 (2018). https://doi.org/10.1016/j.esd.2018.01.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Necaibia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabachi, S., Necaibia, A., Abdelkhalek, O. et al. Performance analysis of an experimental and simulated grid connected photovoltaic system in southwest Algeria. Int J Energy Environ Eng 13, 831–851 (2022). https://doi.org/10.1007/s40095-022-00474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00474-9

Keywords

Navigation