Skip to main content
Log in

Experimental data and development of Weibull distribution model for relative dynamic modulus profile of PMMA/TiO2 polymer nanocomposites

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The study of relative dynamic modulus (\({E}_{\mathrm{tan\delta }}\)) profile, i.e., phase transition behavior of the polymers and their composites in an absolute and methodical manner, is among one of the most eminent tasks of research for deciding endued materialistic applications. In the present study, \({E}_{\mathrm{tan\delta }}\) profile curves of prepared thick-film PMMA/TiO2 polymer nanocomposite specimens were recorded through dynamic mechanical analyzer experimental setup. A model based on the Weibull distribution function, which is applicable specifically while specimen undergoes phase transition mechanism and breakage of secondary bonds among macromolecular polymeric chain segments in any polymeric systems occurs, is developed, and proposed to understand the phase transition characteristic curves along with the precise determination of phase transition temperature (\({T}_{g}\)) values of specimens. The present modeling approach evinces novel and propitious tool for analytical analysis of \({T}_{g}\) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Stephanovich, V.A., Kirichenko, E.V.: The influence of quantum fluctuations on phase transition temperature in disordered ferroelectrics. Phase Trans. 87(10–11), 1174–1180 (2014)

    Article  CAS  Google Scholar 

  2. Xia, X., Li, J., Zhang, J., Weng, G.J.: Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. Int. J. Eng. Sci. 158, 103411 (2021)

    Article  CAS  Google Scholar 

  3. Sponchioni, M., Palmiero, U.C., Moscatelli, D.: Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C 102, 589–605 (2019)

    Article  CAS  Google Scholar 

  4. Ratri, P.J., Tashiro, K.: Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly (vinylidene fluoride) and the β-to-α transition of trans-1, 4-polyisoprene. Polym. J. 45(11), 1107–1114 (2013)

    Article  CAS  Google Scholar 

  5. Biron, M.: Industrial applications of renewable plastics: environmental, technological, and economic advances. William Andrew, Norwich (2016)

    Google Scholar 

  6. Valentín, J.L., Posadas, P., Fernández-Torres, A., Malmierca, M.A., González, L., Chassé, W., Saalwachter, K.: Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 43(9), 4210–4222 (2010)

    Article  Google Scholar 

  7. Van Krevelen, D.W., Te Nijenhuis, K.: Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier (2009)

  8. Hadjichristidis, N., Pitsikalis, M., Iatrou, H., Pispas, S.: The strength of the macromonomer strategy for complex macromolecular architecture: molecular characterization, properties and applications of polymacromonomers. Macromol. Rapid Commun. 24(17), 979–1013 (2003)

    Article  CAS  Google Scholar 

  9. Pradeepa, P., Edwinraj, S., Prabhu, M.R.: Effects of ceramic filler in poly (vinyl chloride)/poly (ethyl methacrylate) based polymer blend electrolytes. Chin. Chem. Lett. 26(9), 1191–1196 (2015)

    Article  CAS  Google Scholar 

  10. Idumah, C.I., Obele, C.M.: Understanding interfacial influence on properties of polymer nanocomposites. Surf. Interfaces 22, 100879 (2021)

    Article  CAS  Google Scholar 

  11. Corcione, C.E., Frigione, M.: Characterization of nanocomposites by thermal analysis. Materials 5(12), 2960–2980 (2012)

    Article  CAS  Google Scholar 

  12. Goyat, M.S., Rana, S., Halder, S., Ghosh, P.K.: Facile fabrication of epoxy-TiO2 nanocomposites: a critical analysis of TiO2 impact on mechanical properties and toughening mechanisms. Ultrason. Sonochem. 40, 861–873 (2018)

    Article  CAS  Google Scholar 

  13. Rahmat, M., Hubert, P.: Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Technol. 72(1), 72–84 (2011)

    Article  CAS  Google Scholar 

  14. Kanda, M., Puggal, S., Dhall, N., Sharma, A.: Recent developments in the fabrication, characterization, and properties enhancement of polymer Nanocomposites: a critical review. Mater. Today: Proc. 5(14), 28243–28252 (2018)

    CAS  Google Scholar 

  15. Bailey, E.J., Winey, K.I.: Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Prog. Polym. Sci. 105, 101242 (2020)

    Article  CAS  Google Scholar 

  16. Sarmazdeh, M.M., Mendi, R.T., Zelati, A., Boochani, A., Nofeli, F.: First-principles study of optical properties of InN nanosheet. Int. J. Mod. Phys. B 30(19), 1650117 (2016)

    Article  CAS  Google Scholar 

  17. Jazideh, A., Boochani, A., Nia, B.A.: Half-metallic, magneto-optic, and thermoelectric properties of CoRuVZ (Z= Al, Ga). Phys. Lett. A 414, 127622 (2021)

    Article  CAS  Google Scholar 

  18. Molamohammadi, M., Arman, A., Achour, A., et al.: Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering. J Mater Sci: Mater Electron 26, 5964–5969 (2015)

    CAS  Google Scholar 

  19. Parameshwaran, R., Sarı, A., Jalaiah, N., Karunakaran, R.: Applications of thermal analysis to the study of phase-change materials. Handbook of Thermal Analysis and Calorimetry, vol. 6, pp. 519–572. Elsevier Science BV (2018)

  20. Menard, K.P., Menard, N.R.: Dynamic mechanical analysis. CRC Press (2020)

  21. Peng, Y.Y., Dussan, D.D. Narain, R.: Thermal, mechanical, and electrical properties. In: Polymer Science and Nanotechnology, pp. 179–201). Elsevier, Amsterdam (2020)

  22. Leal-Junior, A.G., Marques, C., Frizera, A., Pontes, M.J.: Dynamic mechanical analysis on a polymethyl methacrylate (PMMA) polymer optical fiber. IEEE Sens. J. 18(6), 2353–2361 (2018)

    Article  Google Scholar 

  23. Yadav, A., Kumar, A., Singh, P.K., Sharma, K.: Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr. Ferroelectr. 186(1), 106–114 (2018)

    Article  CAS  Google Scholar 

  24. Hadipeykani, M., Aghadavoudi, F., Toghraie, D.: A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer-based epoxy nanocomposite reinforced by CNT: a statistical study. Physica A 546, 123995 (2020)

    Article  CAS  Google Scholar 

  25. Zhang, Y., Xu, X.: Machine learning glass transition temperature of polymers. Heliyon 6(10), e05055 (2020)

    Article  CAS  Google Scholar 

  26. Mathur, V., Sharma, K.: Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends. Heat Mass Transf. 52(12), 2901–2911 (2016)

    Article  CAS  Google Scholar 

  27. Boiko, Y.M.: Statistics of strength distribution upon the start of adhesion between glassy polymers. Colloid Polym. Sci. 294(11), 1727–1732 (2016)

    Article  CAS  Google Scholar 

  28. Richeton, J., Schlatter, G., Vecchio, K.S., Rémond, Y., Ahzi, S.: A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 46(19), 8194–8201 (2005)

    Article  CAS  Google Scholar 

  29. Cook, R.F., DelRio, F.W.: Material flaw populations and component strength distributions in the context of the Weibull function. Exp. Mech. 59, 279–293 (2019)

    Article  CAS  Google Scholar 

  30. Chen, M., Jabeen, F., Rasulev, B., Ossowski, M., Boudjouk, P.: A computational structure—property relationship study of glass transition temperatures for a diverse set of polymers. J. Polym. Sci., Part B: Polym. Phys. 56(11), 877–885 (2018)

    Article  CAS  Google Scholar 

  31. Khan, P.M., Roy, K.: QSPR modelling for prediction of glass transition temperature of diverse polymers. SAR QSAR Environ. Res. 29(12), 935–956 (2018)

    Article  CAS  Google Scholar 

  32. Kusy, R.P., Greenberg, A.R.: Statistical mechanical theories of the glass transition—a new perspective. Polymer 23(1), 36–38 (1982)

    Article  CAS  Google Scholar 

  33. Hołyst, R., Vilgis, T.A.: The structure and phase transitions in polymer blends, diblock copolymers and liquid crystalline polymers: the Landau-Ginzburg approach. Macromol. Theory Simul. 5(4), 573–643 (1996)

    Article  Google Scholar 

  34. Boiko, Y., Marikhin, V., Myasnikova, L.: Statistical analysis of the mechanical behavior of high-performance polymers: Weibull’s or Gaussian distributions? Polymers 14(14), 2841 (2022)

    Article  CAS  Google Scholar 

  35. RK, S., Pandiyarajan, R.: Experimental and theoretical analysis of polymer blend composites using Weibull distribution. J. Chin. Inst. Eng. 45(7), 588–601 (2022)

    Article  CAS  Google Scholar 

  36. Bernal, R.A.: On the application of Weibull statistics for describing strength of micro and nanostructures. Mech. Mater. 162, 104057 (2021)

    Article  Google Scholar 

  37. Trustrum, K., Jayatilaka, A.D.S.: Applicability of Weibull analysis for brittle materials. J. Mater. Sci. 18, 2765–2770 (1983)

    Article  Google Scholar 

  38. Boiko, Y.M.: Weibull statistics of lap-shear strength development at partially self-healed polymer–polymer interfaces: a long-term contact. Colloid Polym. Sci. 295, 1993–1999 (2017)

    Article  CAS  Google Scholar 

  39. Mahieux, C.A., Reifsnider, K.L.: Property modeling across transition temperatures in polymers: a robust stiffness–temperature model. Polymer 42(7), 3281–3291 (2001)

    Article  CAS  Google Scholar 

  40. Mahieux, C.A., Reifsnider, K.L.: Property modeling across transition temperatures in polymers: application to thermoplastic systems. J. Mater. Sci. 37(5), 911–920 (2002)

    Article  CAS  Google Scholar 

  41. Lai, C. D., Murthy, D. N., Xie, M: Weibull distributions and their applications. In: Springer Handbooks, pp. 63–78. Springer, Berlin (2006)

  42. Wong, D., Anwar, M., Debnath, S., Hamid, A. Izman, S.: The Influence of matrix density on the weibull modulus of natural fiber reinforced nanocomposites. In: Materials Science Forum, vol. 1074, pp. 3–9. Trans Tech Publications Ltd, Wollerau (2022)

  43. Koti, V., Singh, K.K., Singh, R.K.: Experimental and statistical investigation on the wear and hardness behaviour of multiwalled carbon nanotubes reinforced copper nanocomposites. Wear 500, 204368 (2022)

    Google Scholar 

  44. Kopal, I., Bakošová, D., Koštial, P., Jančíková, Z., Valíček, J., Harničárová, M.: Weibull distribution application on temperature dependence of polyurethane storage modulus. Int. J. Mater. Res. 107(5), 472–476 (2016)

    Article  CAS  Google Scholar 

  45. Glaskova-Kuzmina, T., Starkova, O., Gaidukovs, S., Platnieks, O., Gaidukova, G.: Durability of biodegradable polymer nanocomposites. Polymers 13(19), 3375 (2021)

    Article  CAS  Google Scholar 

  46. https://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm

  47. https://www.weibull.com/hotwire/issue14/relbasics14.htm

  48. Mathur, V., Bremananth, R., Arya, P.K.: Image analysis of PVC/TiO2 nanocomposites SEM micrographs. Micron 139, 102952 (2020)

    Article  CAS  Google Scholar 

  49. Mathur, V., Arya, P.K.: Assessment of tensile interphase profile of PVC/TiO2 polymer nanocomposites. Philos. Mag. Lett. 99(2), 87–94 (2019)

    Article  CAS  Google Scholar 

  50. Pothan, L.A., Oommen, Z., Thomas, S.: Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63(2), 283–293 (2003)

    Article  CAS  Google Scholar 

  51. Ornaghi, H.L., Neves, R.M., Monticeli, F.M., Thomas, S.: Modeling of dynamic mechanical curves of kenaf/polyester composites using surface response methodology. J. Appl. Polym. Sci. 139(18), 52078 (2022)

    Article  CAS  Google Scholar 

  52. Mathur, V., Arya, P.K.: Dynamic mechanical analysis of PVC/TiO 2 nanocomposites. Adv. Compos. Hybrid Mater. 1(4), 741–747 (2018)

    Article  CAS  Google Scholar 

  53. De Sciarra, F.M., Russo, P. (eds.): Experimental characterization, predictive mechanical and thermal modeling of nanostructures and their polymer composites. William Andrew, Norwich (2018)

    Google Scholar 

  54. Sudarshan Rao, K.: Dynamic mechanical behavior of unfilled and graphite filled carbon epoxy composites. In: IOP Conference Series: Materials Science and Engineering, vol. 1126, No. 1, p. 012033. IOP Publishing, Bristol (2021).

  55. Plazek, D.J., Ngai, K.L.: Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules 24(5), 1222–1224 (1991)

    Article  CAS  Google Scholar 

  56. Ciarella, S., Biezemans, R.A., Janssen, L.M.: Understanding, predicting, and tuning the fragility of vitrimeric polymers. Proc. Natl. Acad. Sci. 116(50), 25013–25022 (2019)

    Article  CAS  Google Scholar 

  57. Beiner, M., Huth, H.: Nanophase separation and hindered glass transition in side-chain polymers. Nat. Mater. 2(9), 595–599 (2003)

    Article  CAS  Google Scholar 

  58. Berthier, L., Biroli, G., Bouchaud, J.P., Cipelletti, L., Masri, D.E., L’Hôte, D., Ladieu, F., Pierno, M.: Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310(5755), 1797–1800 (2005)

    Article  CAS  Google Scholar 

  59. Ngai, K.L.: Dynamic and thermodynamic properties of glass-forming substances. J. Non-Cryst. Solids 275(1–2), 7–51 (2000)

    Article  CAS  Google Scholar 

  60. Böhmer, R., Ngai, K.L., Angell, C.A., Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99(5), 4201–4209 (1993)

    Article  Google Scholar 

  61. Mathew, L., Narayanankutty, S.K.: Dynamic mechanical behaviour of an elastomeric hybrid composite based on nanosilica and short nylon-6 fibre. Prog. Rubber Plast. Recycl. Technol. 26(3), 125–140 (2010)

    Article  CAS  Google Scholar 

  62. Huang, L., Chi, Y., Xu, L., Deng, F.: A thermodynamics-based damage-plasticity model for bond stress-slip relationship of steel reinforcement embedded in fiber reinforced concrete. Eng. Struct. 180, 762–778 (2019)

    Article  Google Scholar 

  63. Zare, Y., Rhee, K.Y.: Experimental data and modeling of storage and loss moduli for a biosensor based on polymer nanocomposites. Results Phys. 19, 103537 (2020)

    Article  Google Scholar 

  64. Mathur, V., Dixit, M., Rathore, K.S., Saxena, N.S., Sharma, K.B.: Morphological and mechanical characterization of a PMMA/CdS nanocomposite. Front. Chem. Sci. Eng. 5(2), 258–263 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

No external Funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mathur.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, P.K., Mathur, V. & Shedid, M.H. Experimental data and development of Weibull distribution model for relative dynamic modulus profile of PMMA/TiO2 polymer nanocomposites. Int Nano Lett 13, 185–191 (2023). https://doi.org/10.1007/s40089-023-00400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-023-00400-9

Keywords

Navigation