Electronic, optical and thermoelectric properties of the WS2–GaN interfaces: a DFT study


Based on the density function theory, the electronic, optical, and thermoelectric behaviors of the WS2–GaN interfaces have been investigated at three d1 = 2.8793 Å, d2 = 4.0459 Å, and d3 = 6.6419 Å distances. All compounds have the ground state point with high hardness. The WS2–GaN interfaces for d1 and d3 cases are the p-type semiconductors and the other one is n-type semiconductor, with 1.82 eV, 1.95 eV, and 1.51eVband gap, respectively, with high levels density around the Fermi level. Optical properties have been approximated by the RPA, TDDFT, and BSE approximations, which the last case has better agreement with the electronic nature of these compositions. The main optical response is occurred in the 5 eV optical energy for two x and z directions. The optical response with BSE approximation indicates the semiconductor behavior for all three interfaces in the infrared, visible and ultra-violate edge regions. The Seebeck coefficients for the d1 and d3 distances show that the holes are the charge carriers and for the other one electrons. In addition, the figures of merit at lower temperatures have been shown in WS2–GaN interfaces for d1 and d3 having good thermoelectric efficiencies with high amount of ZT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Mak, K.F., Shan, J.: Photonics andoptoelectronics of 2D semiconductortransition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    Ţălu, Ş., Bramowicz, M., Kulesza, S., Shafiekhani, A., Ghaderi, A., Mashayekhi, F., Solaymani, S.: Microstructure and tribological properties of Fe NPs @ a-C: H films by micromorphology analysis and fractal geometry. Ind. Eng. Chem. Res. 54(33), 8212–8218 (2015)

    Article  Google Scholar 

  3. 3.

    Dejam, L., Solaymani, S., Achour, A., Stach, S., Ţălu, Ş., Beryani Nezafat, N., Dalouji, V., Shokri, A., Ghaderi, A.: Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem. Phys. Lett. 719, 78–90 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics andoptoelectronics of two-dimensionaltransition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    Chen, Y.X., Wu, C.W., Kuo, T.Y., Chang, Y.L., Jen, M.H., Chen, I.W.: Large-scale production of large-size atomically thin semiconducting molybdenum dichalcogenide sheets in water and its application for super capacitor. Sci. Rep. 6, 26660–32668 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Wells, A.F.: Structural inorganic chemistry. Clarendon Press, Oxford (1984)

    Google Scholar 

  7. 7.

    Seyler, K.L., Schaibley, J.R., Gong, P., Rivera, P., Jones, A.M., Wu, S., Yan, J., Mandrus, D.G., Yao, W., Xu, X.: Electricalcontrolof second-harmonic generation in a WSe2monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X.: Valley polarization in MoS2 monolayers byoptical pumping. Nat. Nanotechnol. 7, 490–493 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    Reyes-Retana, J.A., Cervantes-Sodi, F.: Spin orbital effects in metal-dichalcogenide semiconducting monolayers. Sci. Rep. 6, 24093–24098 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    Kim, Y., Huang, J.-L., Lieber, C.M.: Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy. Appl. Phys. Lett. 59, 3404 (1991)

    CAS  Article  Google Scholar 

  11. 11.

    Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., Shan, J.: Tightly bound trions in monolayer MoS2. Nat. Materials 12, 207–211 (2013)

    CAS  Article  Google Scholar 

  12. 12.

    Zhang, W., Chuu, C.-P., Huang, J.-K., Chen, C.-H., Tsai, M.-L., Chang, Y.-H., Liang, C.-T., He, J.-H., Chou, M.-Y., Li, L.-J.: Ultrahigh-Gain photo detectors based on atomically thin graphene-MoS2 Hetero structures. Sci. Rep. 4, 3826 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    Noori, Y.J., Cao, Y., Roberts, J., Woodhead, C., Bernardo-Gavito, R., Tovee, P.R.J.: Young: photonic crystals for enhanced light extraction from 2D materials. ACS Photon 3, 2515–2520 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    Zheng, Z., Zhang, T., Yao, J., Zhang, Y., Xu, J., Yang, G.: Flexible transparent andultra-broadband photodetector based onlarge-area WSe2 film for wearable devices. Nanotechnology 27, 225501–225512 (2016)

    Article  Google Scholar 

  15. 15.

    Tsai, M.L., Li, M.Y., Shi, Y., Chen, L.J., Li, L.J., He, J.H.: High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions. Nanoscale Horiz. 2, 37–42 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    Ghodselahi, T., Vesaghi, M.A., Gelali, A., Zahrabi, H., Solaymani, S.: Morphology, optical and electrical properties of Cu–Ni nanoparticles in a-C: H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surface Sci. 258(2), 727–731 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    Mukherjee, B., Tseng, F., Gunlycke, D., Kumar, K., Eda, G., Simsek, E.: Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible. Opt. Materials Express 5, 447–455 (2015)

    Article  Google Scholar 

  18. 18.

    Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H.M., Zande, A.M., Chenet, D.A., Shih, E.M., Hone, J., Heinz, T.F.: Measurement ofthe optical dielectric function of monolayertransition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B. 90, 205422–205427 (2014)

    Article  Google Scholar 

  19. 19.

    A. Achour, M. Islam, S. Solaymani, S. Vizireanu, K Saeed, G. Dinescu (2019) Influence of plasma functionalization treatmentand gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2thin films. Appl. Surface Sci. 458:678–685(2018).

  20. 20.

    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Technical Universit¨at Wien, Wien, Austria (2001).

  21. 21.

    Singh, D.J., Nordstr¨om L, : Planewaves, pseudopotentials, and the LAPW method. Springer, New York (2006)

    Google Scholar 

  22. 22.

    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D., Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)

    CAS  Article  Google Scholar 

  23. 23.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Article  Google Scholar 

  24. 24.

    Barth, U.V., Hedin, L.: A local exchange-correlation potential for the spin polarized case i. J. Phys. C 5, 1629 (1972)

    Article  Google Scholar 

  25. 25.

    Dewhurst J K, Sharma S and Ambrosch-Draxl C 2008 The EXCITING Code Manual and Version 0.9.224.

  26. 26.

    Dewhurst J K, Sharma S, Ambrosch-Draxl C and Brouder C EXCITING Code Users Manual, version 0.6.0

  27. 27.

    Hedin, L.: New method for calculating the one-particle green's function with application to the electron-gas. Problem Phys. Rev. 139, A796 (1965)

    Article  Google Scholar 

  28. 28.

    Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984)

    CAS  Article  Google Scholar 

  29. 29.

    Ullrich C.: Time-dependent density-functional theory: concepts and applications (Oxford Graduate Texts (2011).

  30. 30.

    Kronig, R.L.: On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12, 547 (1926)

    CAS  Article  Google Scholar 

  31. 31.

    Bobrov, V.B., Trigger, S.A., vanHeijst, G.J.F., Schram, P.P.J.M.: Kramers-Kroning :relations For the dielectric function and the static conductivity of coulomb system. EPL 90, 10003 (2010)

    Article  Google Scholar 

  32. 32.

    Feng, Z., et al.: Ag-Mg antisite defect induced high thermoelectric performance of α-MgAgSb. Sci. Rep. 7, 2572 (2017)

    Article  Google Scholar 

  33. 33.

    Zheng, X., Liu, C., Yan, Y., Wang, Q.: A review of thermoelectrics research—recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev. 32, 486–503 (2014)

    CAS  Article  Google Scholar 

  34. 34.

    Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    CAS  Article  Google Scholar 

  35. 35.

    DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999)

    CAS  Article  Google Scholar 

  36. 36.

    Snyder, G., Toberer, E.: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammadreza Hantehzadeh.

Ethics declarations

Conflict of interest

The authors claim to have no financial interest, either directly or indirectly, in the products or information listed in the article. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amani, N., Hantehzadeh, M., Akbari, H. et al. Electronic, optical and thermoelectric properties of the WS2–GaN interfaces: a DFT study. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00311-z

Download citation


  • DFT
  • WS2-GaN interfaces
  • Electronic
  • Optic
  • Thermoelectric