Skip to main content
Log in

\(L_p\)-solvability and Hölder regularity for stochastic time fractional Burgers’ equations driven by multiplicative space-time white noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

This paper establishes \(L_p\)-solvability for stochastic time fractional Burgers’ equations driven by multiplicative space-time white noise:

$$\begin{aligned} \partial _t^\alpha u = a^{ij}u_{x^ix^j} + b^{i}u_{x^i} + cu + {\bar{b}}^i u u_{x^i} + \partial _t^\beta \int _0^t \sigma (u)dW_t,\quad t>0;\quad u(0,\cdot ) = u_0, \end{aligned}$$

where \(\alpha \in (0,1)\), \(\beta < 3\alpha /4+1/2\), and \(d< 4--2(2\beta -1)_+/\alpha \). The operators \(\partial _t^\alpha \) and \(\partial _t^\beta \) are the Caputo fractional derivatives of order \(\alpha \) and \(\beta \), respectively. The process \(W_t\) is an \(L_2(\mathbb {R}^d)\)-valued cylindrical Wiener process, and the coefficients \(a^{ij}, b^i, c, {\bar{b}}^{i}\) and \(\sigma (u)\) are random. In addition to the uniqueness and existence of a solution, the Hölder regularity of the solution is also established. For example, for any constant \(T<\infty \), small \(\varepsilon >0\), and almost sure \(\omega \in \varOmega \),

$$\begin{aligned} \sup _{x\in \mathbb {R}^d}|u(\omega ,\cdot ,x)|_{C^{\left[ \frac{\alpha }{2}\left( \left( 2-(2\beta -1)_+/\alpha -d/2 \right) \wedge 1 \right) +\frac{(2\beta -1)_{-}}{2} \right] \wedge 1-\varepsilon }([0,T])}<\infty \end{aligned}$$

and

$$\begin{aligned} \sup _{t\le T}|u(\omega ,t,\cdot )|_{C^{\left( 2-(2\beta -1)_+/\alpha -d/2 \right) \wedge 1 - \varepsilon }(\mathbb {R}^d)} < \infty . \end{aligned}$$

The Hölder regularity of the solution in time changes behavior at \(\beta = 1/2\). Furthermore, if \(\beta \ge 1/2\), then the Hölder regularity of the solution in time is \(\alpha /2\) times that in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

Abbreviations

\(a\wedge b\) :

Minimum of a and b

\(a\vee b\) :

Maximum of a and b

\(L_p(X,\mathcal {M},\mu ;F)\) :

A set of F-valued \(\mathcal {M}^\mu \)-measurable functions with finite p-norm

\(C^\gamma (\mathcal {D};F)\) :

F-valued Hölder space of order \(\gamma \) on domain \(\mathcal {D}\)

\(\sigma (u)\) :

Diffusion coefficient

\(\dot{W}\) :

Space-time white noise

\(W_t\) :

\(L_2(\mathbb {R}^d)\)-valued cylindrical Wiener process

\(\{w_{t}^{k}:k\in \mathbb {N}\}\) :

A set of one-dimensional independent Wiener processes

\(\{\eta _k:k\in \mathbb {N}\}\) :

A set of orthonormal \(L_2\) basis

\(I^\alpha _t\) :

Riemann–Liouville fractional integral of the order \(\alpha \)

\(D^\alpha _t\) :

Riemann–Liouville fractional derivative of the order \(\alpha \)

\(\partial _t^{\alpha }\) :

Caputo fractional derivatives of order \(\alpha \)

\(H^\gamma _p\) :

Bessel potential spaces of order \(\gamma \) with summability p

\(\mathbb {H}^\gamma _p\) :

Stochastic Bessel potential spaces of order \(\gamma \) with summability p

\(\mathcal {H}^\gamma _p\) :

Solution space of order \(\gamma \) with summability p

\(R_{\gamma }\) :

Kernel of the Bessel potential operator

References

  1. Akram, T., Abbas, M., Riaz, M., Ismail, A., Ali, A.: An efficient numerical technique for solving time fractional Burgers’ equation. Alex. Eng. J. 59, 2201–2220 (2020)

    Article  Google Scholar 

  2. Almeida, R.: A Gronwall inequality for a general Caputo fractional operator. Math. Inequal. Appl. 20, 1089–1105 (2017)

    MathSciNet  Google Scholar 

  3. Bagley, R., Torvik, P.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, 918–925 (1985)

    Article  Google Scholar 

  4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)

    Google Scholar 

  5. Chen, Z.-Q., Kim, K.-H., Kim, P.: Fractional time stochastic partial differential equations. Stoch. Processes Their Appl. 125, 1470–1499 (2015)

    Article  MathSciNet  Google Scholar 

  6. Dong, H., Kim, D.: \(L_p\)-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345 (2019)

    Article  MathSciNet  Google Scholar 

  7. El-Danaf, T., Hadhoud, A.: Parametric spline functions for the solution of the one time fractional Burgers’ equation. Appl. Math. Model. 36, 4557–4564 (2012)

    Article  MathSciNet  Google Scholar 

  8. Esen, A., Tasbozan, O.: Numerical solution of time fractional Burgers’ equation. Acta Univ. Sapientiae Math. 7, 167–185 (2015)

    MathSciNet  Google Scholar 

  9. Garra, R.: Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks. Phys. Rev. 84, 036605 (2011)

    Google Scholar 

  10. Giona, M., Roman, H.E.: Fractional diffusion equation for transport phenomena in random media. Physica A Stat. Mech. Appl. 185, 87–97 (1992)

    Article  Google Scholar 

  11. Grafakos, L.: Modern Fourier Analysis, vol. 250. Springer, Berlin (2014)

    Google Scholar 

  12. Gyöngy, I.: Uniqueness and existence results for semilinear stochastic partial differential equations. Stoch. Processes Their Appl. 73, 271–299 (1998)

    Article  Google Scholar 

  13. Gyöngy, I., Nualart, D.: On the stochastic Burgers’ equation in the real line. Annu. Probab. 27, 782–802 (1999)

    MathSciNet  Google Scholar 

  14. Han, B.-S.: \(L_p\)-regularity theory for semilinear stochastic partial differential equations with multiplicative white noise. J. Math. Anal. Appl. 514, 126366 (2022)

    Article  Google Scholar 

  15. Han, B.-S.: A regularity theory for stochastic generalized Burgers’ equation driven by a multiplicative space-time white noise. Stoch. Partial Differ. Equ. Anal. Comput. 11, 1–41 (2022)

    MathSciNet  Google Scholar 

  16. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    Book  Google Scholar 

  17. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  18. Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfac. Electrochem. 33, 253–265 (1971)

    Article  Google Scholar 

  19. Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MathSciNet  Google Scholar 

  20. Keller, J.J.: Propagation of simple non-linear waves in gas filled tubes with friction. Zeitschrift für angewandte Mathematik und Physik 32, 170–181 (1981)

    Article  Google Scholar 

  21. Kilbas, A., Marichev, O., Samko, S.: Fractional Integrals and Derivatives: Theory Applications (1993)

  22. Kim, K.-H., Lim, S.: Asymptotic behaviors of fundamental solution and its derivatives related to space-time fractional differential equations. J. Korean Math. Soc. 53, 929–967 (2015)

    Article  Google Scholar 

  23. Kim, K.-H., Park, D.: A Sobolev space theory for the time-fractional stochastic partial differential equations driven by levy processes. J. Theoret. Probab. 37, 1–50 (2023)

    Google Scholar 

  24. Kim, I., Kim, K.-H., Lim, S.: An \(L_q(L_p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)

    Article  MathSciNet  Google Scholar 

  25. Kim, I., Kim, K.-H., Lim, S.: A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives. Ann. Probab. 47, 2087–2139 (2019)

    Article  MathSciNet  Google Scholar 

  26. Krylov, N.: An analytic approach to SPDEs. Stoch. Partial Differ. Equ. Six Perspect. 64, 185–242 (1999)

    MathSciNet  Google Scholar 

  27. Krylov, N.: Introduction to the Theory of Random Processes, vol. 43. American Mathematical Society, Providence (2002)

    Google Scholar 

  28. Krylov, N.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, vol. 96. American Mathematical Society, Providence (2008)

    Google Scholar 

  29. Lewis, P., Nualart, D.: Stochastic Burgers’ equation on the real line: regularity and moment estimates. Stochastics 90, 1053–1086 (2018)

    Article  MathSciNet  Google Scholar 

  30. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers’ equation. Appl. Math. Model. 4, 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  31. Magin, R.: Fractional calculus in bioengineering, Part 1. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier Science, Amsterdam (1998)

    Google Scholar 

  33. Sun, H.H., Onaral, B., Tso, Y.-Y.: Application of the positive reality principle to metal electrode linear polarization phenomena. IEEE Trans. Biomed. Eng. 10, 664–674 (1984)

    Article  Google Scholar 

  34. Triebel, H.: Theory of Function Spaces. Modern Birkhäuser Classics. Springer, Basel (2010)

    Google Scholar 

  35. Walsh, J.: An introduction to stochastic partial differential equations. In: École d’Été de Probabilités de Saint Flour XIV-1984, 265–439. Springer (1986)

  36. Zou, G.-A., Wang, B.: Stochastic Burgers’ equation with fractional derivative driven by multiplicative noise. Comput. Math. Appl. 74, 3195–3208 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom-Seok Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. NRF-2021R1C1C2007792).

Appendix

Appendix

This section presents the published results of Bessel potential spaces and fractional calculus for the convenience of the reader.

1.1 Properties of Bessel potential spaces

Below we present the properties of Bessel potential spaces \(H_{p}^{\gamma }\). For the definition of the Bessel potential spaces \(H_{p}^{\gamma }\), see Definition 2.4.

Next, we introduce the space of point-wise multipliers in \(H_p^\gamma \).

Definition A.1

Fix \(\gamma \in \mathbb {R}\) and \(\alpha \in [0,1)\) such that \(\alpha = 0\) if \(\gamma \in \mathbb {Z}\) and \(\alpha >0\) if \(|\gamma |+\alpha \) is not an integer. Define

$$\begin{aligned}{} & {} \begin{aligned} B^{|\gamma |+\alpha } = {\left\{ \begin{array}{ll} B(\mathbb {R}^{d}) &{}\quad \text {if } \gamma = 0, \\ C^{|\gamma |-1,1}(\mathbb {R}^{d}) &{}\quad \text {if }\gamma \text {is a nonzero integer}, \\ C^{|\gamma |+\alpha }(\mathbb {R}^{d}) &{}\quad \text {otherwise}, \end{array}\right. } \end{aligned} \\{} & {} \begin{aligned} B^{|\gamma |+\alpha }(\ell _2) = {\left\{ \begin{array}{ll} B(\mathbb {R}^{d},\ell _2) &{}\quad \text {if } \gamma = 0, \\ C^{|\gamma |-1,1}(\mathbb {R}^{d},\ell _2) &{}\quad \text {if} \gamma \text {is a nonzero integer}, \\ C^{|\gamma |+\alpha }(\mathbb {R}^{d},\ell _2) &{}\quad \text {otherwise}, \end{array}\right. } \end{aligned} \end{aligned}$$

where \(B(\mathbb {R}^{d})\) is the space of bounded Borel functions on \(\mathbb {R}^{d}\), \(C^{|\gamma |-1,1}(\mathbb {R}^{d})\) represents the space of \(|\gamma |-1\) times continuous differentiable functions whose derivatives of the \((|\gamma |-1)\)th order derivative are Lipschitz continuous, and \(C^{|\gamma |+\alpha }\) is the real-valued Hölder spaces. The space \(B(\ell _2)\) represents a function space with \(\ell _2\)-valued functions instead of real-valued function spaces.

Lemma A.1

Let \(\gamma \in \mathbb {R}\) and \(p>1\).

  1. (i)

    The space \(C_c^\infty (\mathbb {R}^d)\) is dense in \(H_{p}^{\gamma }\).

  2. (ii)

    Let \(\gamma - d/p = n+\nu \) for some \(n=0,1,\cdots \) and \(\nu \in (0,1]\). Then, for any \(k\in \{ 0,1,\cdots ,n \}\), we obtain

    $$\begin{aligned} | D^k u |_{C(\mathbb {R}^d)} + | D^n u |_{\mathcal {C}^\nu (\mathbb {R}^d)} \le N \Vert u \Vert _{H_{p}^\gamma }, \end{aligned}$$
    (A.1)

    where \(\mathcal {C}^\nu (\mathbb {R}^d)\) is the Zygmund space.

  3. (iii)

    The operator \(D_i:H_p^{\gamma }\rightarrow H_p^{\gamma +1}\) is bounded. Moreover, for any \(u\in H_p^{\gamma +1}\),

    $$\begin{aligned} \left\| D^i u \right\| _{H_p^\gamma } \le N\Vert u \Vert _{H_p^{\gamma +1}}, \end{aligned}$$

    where \(N = N(\gamma ,p)\).

  4. (iv)

    For \(\gamma \in (0,1)\) and \(u\in H_{p}^{\gamma }\),

    $$\begin{aligned} \Vert (1- \varDelta ^{\gamma })u \Vert _{L_p} \le N\left( \Vert u \Vert _{L_p} + \Vert (-\varDelta )^{\gamma } u \Vert _{L_p} \right) , \end{aligned}$$

    where \(N = N(\gamma ,p)\) and \((-\varDelta )^{\gamma /2}\) is the fractional Laplacian.

  5. (v)

    For any \(\mu ,\gamma \in \mathbb {R}\), the operator \((1-\varDelta )^{\mu /2}:H_p^\gamma \rightarrow H_p^{\gamma -\mu }\) is an isometry.

  6. (vi)

    Let

    $$\begin{aligned} \begin{aligned} \varepsilon \in [0,1],\quad p_i\in (1,\infty ),\quad \gamma _i\in \mathbb {R},\quad i=0,1,\\ \gamma =\varepsilon \gamma _1+(1-\varepsilon )\gamma _0,\quad 1/p=\varepsilon /p_1+(1-\varepsilon )/p_0. \end{aligned} \end{aligned}$$

    Then, we have

    $$\begin{aligned} \Vert u\Vert _{H^\gamma _{p}} \le \Vert u\Vert ^{\varepsilon }_{H^{\gamma _1}_{p_1}}\Vert u\Vert ^{1-\varepsilon }_{H^{\gamma _0}_{p_0}}. \end{aligned}$$
  7. (vii)

    Let \(u\in H_p^\gamma \). Then, we have

    $$\begin{aligned} \Vert au \Vert _{H_p^\gamma } \le N\Vert a \Vert _{B^{|\gamma |+\alpha }}\Vert u \Vert _{H_p^\gamma }\quad \text {and}\quad \Vert bu \Vert _{H_p^\gamma (\ell _2)} \le N\Vert b \Vert _{B^{|\gamma |+\alpha }(\ell _2)}\Vert u \Vert _{H_p^\gamma }, \end{aligned}$$

    where \(N = N(\gamma ,p)\). The spaces \(B^{|\gamma |+\alpha }\) and \(B^{|\gamma |+\alpha }(\ell _2)\) are introduced in Definition A.1.

Proof

The above results are well known. For (i), (iii), (v), and (vi), see Theorems 13.3.7 (i), 13.8.1, 13.3.7 (ii), and Exercise 13.3.20 of [28], respectively. For (ii), see [34]. For (iv), see Theorems 1.3.6 and 1.3.8 of [11]. For (vii), the reader is referred to [26, Lemma 5.2]. \(\square \)

Next, we propose embedding theorems for Slobodetskii’s spaces (e.g., [34]).

Lemma A.2

If \(\mu p >1\) and \(p\ge 1\), for any continuous \(L_p\)-valued function \(\phi \) and \(\gamma \le \rho \), we obtain the following:

$$\begin{aligned} \begin{aligned}&\Vert \phi (\rho ) - \phi (\gamma ) \Vert _{L_p}^p \\&\quad \le N(\rho -\gamma )^{\mu p -1}\int _\gamma ^\rho \int _\gamma ^\rho 1_{t > s}\frac{\Vert \phi (t) - \phi (s) \Vert _{L_p}^p}{|t-s|^{1+\mu p}} dsdt\quad \left( \frac{0}{0}:= 0 \right) , \end{aligned} \end{aligned}$$
(A.2)

where \(N = N(\mu ,p)\). In particular,

$$\begin{aligned} \begin{aligned} \mathbb {E}\sup _{0\le s < t \le T}\frac{\Vert \phi (t) - \phi (s) \Vert _{L_p}^p}{|t-s|^{\mu p - 1}}&\le N \int _0^{T}\int _0^{T} 1_{t>s} \frac{\mathbb {E}\left\| \phi (t) - \phi (s) \right\| _{L_p}^p}{|t-s|^{1 + \mu p}}dsdt. \end{aligned} \end{aligned}$$
(A.3)

1.2 Properties of fractional calculus

We present the properties of fractional calculus. For the definitions of fractional integral \(I^{\alpha }_{t}\) and derivatives \(D_{t}^{\alpha }\), \(\partial _{t}^{\alpha }\), see Definitions 2.2 and 2.3.

Remark A.1

  1. (i)

    For any \(\alpha ,\beta \ge 0\), \(D^\alpha _t D^\beta _t\varphi = D^{\alpha +\beta }_t\varphi \) and

    $$\begin{aligned} D^\alpha _t I^\beta _t \varphi = D^{\alpha -\beta }_t \varphi 1_{\alpha > \beta } + I_t^{\beta -\alpha }\varphi 1_{\alpha \le \beta }. \end{aligned}$$

    Additionally, if \(\alpha \in (0,1)\), \(I^{1-\alpha }_t \varphi \) is absolutely continuous, and \(I^{1-\alpha }_t\varphi (0) = 0\), then the following equality holds:

    $$\begin{aligned} I^\alpha _t D^\alpha _t\varphi (t) = \varphi (t). \end{aligned}$$
  2. (ii)

    By the definition of fractional derivatives, if \(\varphi (0) = \varphi ^{(1)}(0) = \cdots = \varphi ^{(n -1)}(0) = 0\), then \(D^\alpha _t\varphi = \partial _t^\alpha \varphi \).

Remark A.2

For any \(q \in [1,\infty ]\), by Jensen’s inequality

$$\begin{aligned} \Vert I^\alpha \varphi \Vert _{L_q((0,T))}\le N(\alpha ,p,T)\Vert \varphi \Vert _{L_q((0,T))}. \end{aligned}$$
(A.4)

Therefore, \(I_t^\alpha \varphi (t)\) is well-defined and finite for almost all \(t\le T\). Additionally, Fubini’s theorem implies that, for \(\alpha ,\beta \ge 0\), we obtain

$$\begin{aligned} I^{\alpha +\beta }\varphi (t)=I^{\alpha }I^{\beta }\varphi (t). \end{aligned}$$

Lemma A.3 presents the relationship between the stochastic and fractional integrals, which is applied when \(I_t^\alpha \) or \(D_t^\alpha \) is applied to the stochastic part of the SPDEs.

Lemma A.3

Let \(T<\infty \) be a constant.

  1. (i)

    Let \(\alpha \ge 0\) and \(h\in L_2(\varOmega \times [0,T],\mathcal {P};l_2)\). Then, the equality

    $$\begin{aligned} I^\alpha \left( \sum _{k=1}^\infty \int _0^\cdot h^k(s) dw_s^k \right) (t) = \sum _{k=1}^\infty \left( I^\alpha \int _0^\cdot h^k(s)dw_s^k \right) (t) \end{aligned}$$

    holds for all \(t\le T\) almost surely and in \(L_2(\varOmega \times [0,T])\), where the series on both sides converge in probability.

  2. (ii)

    If \(\alpha \ge 0\) and \(h_n\rightarrow h\) in \(L_2(\varOmega \times [0,T],\mathcal {P};l_2)\) as \(n\rightarrow \infty \), then

    $$\begin{aligned} \sum _{k = 1}^\infty \left( I^\alpha \int _0^\cdot h_n^k dw_s^k \right) (t) \rightarrow \sum _{k=1}^\infty \left( I^\alpha \int _0^\cdot h^k dw_s^k \right) (t) \end{aligned}$$

    in probability uniformly on [0, T].

  3. (iii)

    If \(\alpha > 1/2\) and \(h\in L_2(\varOmega \times [0,T],\mathcal {P};l_2)\), then \(\left( I^\alpha \sum _{k=1}^\infty \int _0^\cdot h^k (s) dw_s^k \right) (t)\) is differentiable in t and

    $$\begin{aligned} \frac{\partial }{\partial t}\left( I^\alpha \sum _{k=1}^\infty \int _0^\cdot h^k (s) dw_s^k \right) (t) = \frac{1}{\Gamma (\alpha )}\sum _{k=1}^\infty \int _0^t (t-s)^{\alpha -1}h^k(s)dw_s^k \end{aligned}$$

    almost everywhere on \(\varOmega \times [0,T]\).

Proof

Refer to Lemmas 3.1 and 3.3 of [5]. \(\square \)

The next lemma provides an inequality that acts like the chain rule. Although the inequality is included in the proof of [6, Proposition 4.1], we provide it for the readers’ convenience.

Lemma A.4

If \(\alpha \in (0,1)\), for any \(\psi \in C_c^\infty ((0,\infty )\times \mathbb {R}^d)\), we have

$$\begin{aligned} \partial _t^\alpha (\psi (\cdot ,x))^{2}(t) \le 2 \psi (t,x)|\psi (t,x)| \partial _t^\alpha \psi (t,x), \end{aligned}$$
(A.5)

for all \((t,x)\in (0,\infty )\times \mathbb {R}^d\).

Proof

Let \(\psi \in C_c^\infty ((0,\infty )\times \mathbb {R}^d)\) and \(t\in (0,\infty )\) and \(x\in \mathbb {R}^d\). For \(s\in (0,t]\), we set

$$\begin{aligned} F_1(s):= \frac{1}{2}|\psi (s,x)|^2,\quad F_2(s):= \psi (s,x)\psi (t,x), \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} F(s)&:= \frac{1}{2}\left( |\psi (s,x)|^2 - |\psi (t,x)|^2 \right) - (\psi (s,x) - \psi (t,x))\psi (t,x). \\ \end{aligned} \end{aligned}$$

Further,

$$\begin{aligned} F(s) = \frac{1}{2}|\psi (s,x) - \psi (t,x)|^2 \ge 0 \end{aligned}$$

on \(s\le t\), and the equality holds for \(s = t\). The integration by parts implies that

$$\begin{aligned} \begin{aligned} \int _0^t (t-s)^{-\alpha }(F_1'(s) - F_2'(s))ds = \int _0^t (t-s)^{-\alpha } F'(s)ds\le 0. \end{aligned} \end{aligned}$$

Then, by the definition of \(\partial _t^\alpha \) (Definition 2.3), we obtain (5.15), with \(k = 1\). \(\square \)

Lemma A.1 is a simplified version of [2, Theorem 8], which is a Grönwall inequality with time fractional integrations.

Theorem A.1

Let \(\psi (t)\) be a nonnegative integrable function on [0, T]. For a constant \(N_1\), if the function \(\psi \) satisfies

$$\begin{aligned} \psi (t) \le \psi _0 + N_1I_t^\alpha \psi \end{aligned}$$

on \(t\in [0,T]\), then

$$\begin{aligned} \psi (t) \le \left( 1 + \sum _{k=0}^\infty \frac{N_1^k }{\Gamma (k\alpha )}\frac{(\Gamma (\alpha )t^{\alpha })^k}{k\alpha } \right) \psi _0 \end{aligned}$$

on \(t\in [0,T]\).

Proof

See [2, Theorem 8] \(\square \)

We discuss some facts related to the fundamental solution of fractional diffusion equations. For more information, see [24, Section 3], [25, Section 3], and [22].

Lemma A.5

Let \(d\in \mathbb {N}\), \(\alpha \in (0,1)\), \(\beta < \alpha + 1/2\), \(\gamma \in [0,2)\), and \(\sigma \in \mathbb {R}\).

  1. (i)

    There exists a fundamental solution \(p(t,\cdot )\in L_1(\mathbb {R}^{d})\) satisfying

    $$\begin{aligned} \partial _t^\alpha u (t,x) = \varDelta u(t,x);\quad t > 0,\quad u(0,\cdot ) = \delta _0, \end{aligned}$$

    where \(\delta _0\) is the Dirac delta distribution. Furthermore, if we define \(q_{\alpha ,\beta }(t,x)\) as in (7.2), for all \(t\ne 0\) and \(x\ne 0\),

    $$\begin{aligned} \partial _t p(t,x) = \varDelta q_{\alpha ,1}(t,x). \end{aligned}$$

    Additionally, for each \(x\ne 0\), \(\frac{\partial }{\partial t}p(t,x)\rightarrow 0\) as \(t \downarrow 0\). Moreover, \(\frac{\partial }{\partial t}p(t,x)\) is integrable in \(x\in \mathbb {R}^d\) uniformly on \(t\in [\varepsilon ,T]\) for any \(\varepsilon >0\).

  2. (ii)

    There exist constants \(c = c(\alpha ,d)\) and \(N = N(\alpha ,d)\) such that if \(|x|^2 \ge t^\alpha \),

    $$\begin{aligned} |p(t,x)| \le N|x|^{-d}\exp \left\{ -c|x|^{\frac{2}{2-\alpha }}t^{-\frac{\alpha }{2-\alpha }} \right\} . \end{aligned}$$
  3. (iii)

    Let \(n\in \mathbb {N}\). Then, there exists \(N = N(\alpha ,\gamma ,n)\) such that

    $$\begin{aligned} \left| D_t^\sigma D_x^n (-\varDelta )^{\gamma /2}q_{\alpha ,\beta }(1,x)\right| \le N\left( |x|^{-d+2-\gamma -n}\wedge |x|^{-d-\gamma -n} \right) , \end{aligned}$$

    where \(q_{\alpha ,\beta }\) is the function in (7.2) and \((-\varDelta )^{\gamma /2}\) is the fractional Laplacian.

  4. (iv)

    The scaling properties hold. In other words,

    $$\begin{aligned} (-\varDelta )^{\gamma /2}q_{\alpha ,\beta }(t,x) = t^{-\frac{\alpha (d+\gamma )}{2}+\alpha -\beta } (-\varDelta )^{\gamma /2}q_{\alpha ,\beta }(1,xt^{-\frac{\alpha }{2}}), \end{aligned}$$
    (A.6)

    where \(q_{\alpha ,\beta }\) is the function introduced in (7.2).

Proof

To demonstrate (i), (ii), and (iii), we follow from Theorems 2.1 and 2.3 of [22]. To observe (iv), if \(\alpha \le \beta \), we have (A.6) from (5.2) and (6.1) (and the identity below of (6.1)) from [22]. In contrast, if \(\alpha > \beta \), then

$$\begin{aligned} \begin{aligned} (-\varDelta )^{\gamma /2}q_{\alpha ,\beta }(t,x)&=\frac{1}{\Gamma (\alpha -\beta )}\int _{0}^{t}(t-s)^{\alpha -\beta -1}(-\varDelta )^{\gamma /2}p(s,x)ds \\&=t^{\alpha -\beta -\frac{\alpha (d+\gamma )}{2}}\frac{1}{\Gamma (\alpha -\beta )}\int _{0}^{1}(1-s)^{\alpha -\beta -1}(-\varDelta )^{\gamma /2}p(1,t^{\alpha /2}x)ds \\&=t^{\alpha -\beta -\frac{\alpha (d+\gamma )}{2}}q_{\alpha ,\beta }(1,t^{-\alpha /2}x) \end{aligned} \end{aligned}$$

by the results for the case \(\alpha = \beta \) and Lamma A.5 (iii), (5.2), and (6.1) (and the identity below of (6.1)) from [22]. The lemma is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, BS. \(L_p\)-solvability and Hölder regularity for stochastic time fractional Burgers’ equations driven by multiplicative space-time white noise. Stoch PDE: Anal Comp (2024). https://doi.org/10.1007/s40072-024-00329-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40072-024-00329-w

Keywords

Mathematics Subject Classification

Navigation