Skip to main content
Log in

Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this article, we study a class of stochastic partial differential equations with fractional differential operators subject to some time-independent multiplicative Gaussian noise. We derive sharp conditions, under which a unique global \(L^p(\Omega )\)-solution exists for all \(p\ge 2\). In this case, we derive exact moment asymptotics following the same strategy as that in a recent work by Balan et al. (Inst Henri Poincaré Probab Stat. To appear, 2021). In the case when there exists only a local solution, we determine the precise deterministic time, \(T_2\), before which a unique \(L^2(\Omega )\)-solution exists, but after which the series corresponding to the \(L^2(\Omega )\) moment of the solution blows up. By properly choosing the parameters, results in this paper interpolate the known results for both stochastic heat and wave equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. G(tx) corresponds to \(Y_{a,b,r,\nu ,d}(t,x)\) from [6].

  2. Note that when \(d\ge 1\), \(b=1\) and \(a\in (0,2]\), part (1) of [6, Theorem 4.6] says that the fundamental solution Y, which is the fundamental solution G in this paper, is nonnegative provided \(r=0\) or \(r>1\). Indeed, because in this case Z is always nonnegative, for \(r>0\), Y as a fractional integral of Z (see (4.5), ibid.), Y, or our G, should also be nonnegative. We thank Guannan Hu who pointed out to us this observation.

  3. Note that the Fourier transform is defined differently in [12].

  4. Wiener chaos expansion has been widely to solve the linear stochastic partial differential equations. We direct interested readers to [3, Section 5] for a presentation of this procedure.

  5. In Theorem 1.5 or eq. (1.20) of Bass et al. [2], the factor \((2\pi )^{-d}\) should not be present.

References

  1. Balan, R.M., Chen, L., Chen, X.: Exact asymptotics of the stochastic wave equation with time-independent noise. Inst. Henri Poincaré Probab. Stat., to appear. Ann (2021)

  2. Bass, R., Chen, X., Rosen, M.: Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat. 45, 626–666 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, R., Song, J.: Hyperbolic Anderson Model with space-time homogeneous Gaussian noise. ALEA Lain. Am. J. Probab. Math. Stat. 14, 799–849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.: Nonlinear stochastic time-fractional diffusion equations on \({\mathbb{R}}\): moments, Hölder regularity and intermittency. Trans. Am. Math. Soc. 369(12), 8497–8535 (2017)

    Article  MATH  Google Scholar 

  5. Chen, L., Hu, Y., Hu, G., Huang, J.: Stochastic time-fractional diffusion equations on \({\mathbb{R}}^d\). Stochastics 89(1), 171–206 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, L., Hu, Y., Nualart, D.: Nonlinear stochastic time-fractional slow and fast diffusion equations on \({\mathbb{R}}^d\). Stoch. Process. Appl. 129, 5073–5112 (2019)

    Article  MATH  Google Scholar 

  7. Chen, X.: Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. Ann. Probab. 40(4), 1436–1482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.: Moment asymptotics for parabolic Anderson equation with fractional time-space noise: in Skorohod regime. Ann. Inst. Henri Poincaré: Prob. Stat. 53, 819–841 (2017)

    Article  MATH  Google Scholar 

  9. Chen, X.: Parabolic Anderson model with rough or critical Gaussian noise. Ann. Inst. Henri Poincaré Probab. Stat. 55, 941–976 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Hu, Y., Song, J., Xing, F.: Exponential asymptotics for time-space Hamiltonians Ann. Inst. Henri Poincaré Probab. Stat. 51, 1529–1561 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Chen, X., Deya, A., Ouyang, C., Tindel, S.: Moment estimates for some renormalized parabolic Anderson models. Ann. Probab., To appear 2021 (2020)

  12. Chen, X., Hu, Y.Z., Song, J., Song, X.: Temporal asymptotics for fractional parabolic Anderson model. Electron. J. Probab., 14, 39 pp (2018)

  13. Chen, X., Li, W.: Large and moderate deviations for intersection local times. Probab. Theory Relat. Fields 128, 213–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A minicourse on stochastic partial differential equations. Springer-Verlag, Berlin, 2009. xii+216 pp (2009)

  15. Hairer, M., Labbé, C.: A simple construction of the continuum parabolic Anderson model on \({\mathbb{R}}^2\). Electron. Commun. Probab. 20(43), 11 (2015)

    MATH  Google Scholar 

  16. Hairer, M., Labbé, C.: Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. 20(4), 1005–1054 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, Y.: Heat equations with fractional white noise potentials. Appl. Math. Optim. 43, 221–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, Y.: Chaos expansion of heat equations with white noise potentials. Potential Anal. 16(1), 45–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lê, K.: A remark on a result of Xia Chen. Stat. Probab. Lett. 118, 124–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb, E., Loss, M.: Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI (2001)

  21. Mijena, J.B., Nane, E.: Space-time fractional stochastic partial differential equations. Stoch. Process. Appl. 125(9), 3301–3326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nualart, D., Nualart, E.: Introduction to Malliavin Calculus. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Raluca Balan for some useful comments on our paper and two anonymous referees for their careful reading of the paper with many good suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Eisenberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 3.4

In this proof, \(\mu (\mathrm {d} x) = \varphi (x)\mathrm {d} x = C_{\alpha ,d}|x|^{-(d-\alpha )}\mathrm {d} x\). By the change of variables \(x' = \left( \nu /2\right) ^{1/a} x\) and \(y' = \left( \nu /2\right) ^{1/a} y\), we see that

$$\begin{aligned} \rho _{\nu ,a}&\left( |\cdot |^{-\alpha }\right) = \sup _{\left\| f \right\| _{L^2(\mathbb {R}^d)} =1} \int _{\mathbb {R}^d} \left[ \int _{\mathbb {R}^d} \frac{f(x+y)f(y)}{\sqrt{1+\frac{\nu }{2}|x+y|^a } \sqrt{1+\frac{\nu }{2}|y|^a} } \mathrm {d} y \right] ^2 \mu (\mathrm {d} x) \\&= \left( \frac{\nu }{2} \right) ^{-\alpha /a} \sup _{\left\| f \right\| _{L^2(\mathbb {R}^d)} =1} \int _{\mathbb {R}^d} \left[ \int _{\mathbb {R}^d} \frac{f\left( \left( \frac{\nu }{2}\right) ^{-1/a}(x+y)\right) f\left( \left( \frac{\nu }{2}\right) ^{-1/a}y\right) }{\sqrt{1+|x+y|^a } \sqrt{1+|y|^a} } \left( \frac{\nu }{2}\right) ^{-d/a} \mathrm {d} y \right] ^2\\&\quad \varphi (x)\mathrm {d} x. \end{aligned}$$

By setting \(f^*(x) =\left( \nu /2\right) ^{-d/(2a)} f\left( \left( \nu /2\right) ^{-1/a} x \right) \), we see that

$$\begin{aligned} \rho _{\nu ,a} \left( |\cdot |^{-\alpha }\right)&= \left( \frac{\nu }{2} \right) ^{-\alpha /a} \sup _{\left\| f \right\| _{L^2(\mathbb {R}^d)} =1} \int _{\mathbb {R}^d} \left[ \int _{\mathbb {R}^d} \frac{f^*\left( x+y\right) f^*\left( y\right) }{\sqrt{1+|x+y|^a } \sqrt{1+|y|^a} } \mathrm {d} y \right] ^2 \varphi (x)\mathrm {d} x \\&= \left( \frac{\nu }{2} \right) ^{-\alpha /a} \sup _{\left\| f^* \right\| _2 =1} \int _{\mathbb {R}^d} \left[ \int _{\mathbb {R}^d} \frac{f^*\left( x+y\right) f^*\left( y\right) }{\sqrt{1+|x+y|^a } \sqrt{1+|y|^a} } \mathrm {d} y \right] ^2 \varphi (x)\mathrm {d} x \\&= \left( \frac{\nu }{2} \right) ^{-\alpha /a} \rho _{2,a}\left( |\cdot |^{-\alpha }\right) , \end{aligned}$$

where the second equality is due to the fact that \(\int _{\mathbb {R}^d} f(x)^2 \mathrm {d} x = \int _{\mathbb {R}^d} f^*(x)^2 \mathrm {d} x\). Then an application of (3.16) proves (3.18).

Similarly, for (3.21), by change of variables \(\xi _{\sigma (j)}' = \left( \nu /2\right) ^{1/a} \xi _{\sigma (j)}\), we see that

$$\begin{aligned}&\lim _{n \rightarrow \infty } \frac{1}{n} \log \left[ \frac{1}{(n!)^2} \int _{(\mathbb {R}^d)^n} \left( \sum _{\sigma \in \Sigma _n} \prod _{k=1}^n \frac{1}{1+ \frac{\nu }{2}|\sum _{j=k}^n \xi _{\sigma (j)}|^a}\right) ^2 \mu (\mathrm {d} \vec {\xi }\,)\right] \\&\quad = \lim _{n \rightarrow \infty } \frac{1}{n} \log \left[ \frac{1}{(n!)^2} \left( \frac{\nu }{2} \right) ^{-n\alpha /a} \int _{(\mathbb {R}^d)^n} \left[ \sum _{\sigma \in \Sigma _n} \prod _{k=1}^n \frac{1}{1+\left| \sum _{j=k}^n \xi _{\sigma (j)} \right| ^a}\right] ^2 \mu (\mathrm {d} \vec {\xi } )\right] \\&\quad = \log \left[ \left( \frac{\nu }{2} \right) ^{-\alpha /a} \right] + \lim _{n \rightarrow \infty } \frac{1}{n} \log \left[ \frac{1}{(n!)^2} \int _{(\mathbb {R}^d)^n} \left[ \sum _{\sigma \in \Sigma _n} \prod _{k=1}^n \frac{1}{1+\left| \sum _{j=k}^n \xi _{\sigma (j)} \right| ^a}\right] ^2 \mu (\mathrm {d} \vec {\xi } )\right] \\&\quad = \log \left( \left( \frac{\nu }{2} \right) ^{-\alpha /a} \right) + \log \left( \rho _{2,a} \left( |\cdot |^{-\alpha }\right) \right) = \log \left( \rho _{\nu , a} \left( |\cdot |^{-\alpha }\right) \right) , \end{aligned}$$

where we have applied (3.15) and (3.18). This completes the proof of Lemma 3.4. \(\square \)

Proof of (4.9)

Starting from (3.5), by the change of variables \(t_i' = t_i/c\) and the scaling property in (3.7), we have that

$$\begin{aligned} \mathcal {F}f_n(\cdot ,0,ct)(\xi _1,\cdots , \xi _n)&= \int _{[0,ct]^n_<} \prod _{k=1}^n \overline{ \mathcal {F}G(t_{k+1} - t_k, \cdot )\left( \sum _{j=1}^k \xi _j \right) } \mathrm {d} \vec {t} \\&= \int _{[0,t]^n_<} \prod _{k=1}^n \overline{ \mathcal {F}G\left( c(t_{k+1} - t_k), \cdot \right) \left( \sum _{j=1}^k \xi _j \right) } c^n \mathrm {d} \vec {t} \\&= \int _{[0,t]^n_<} \prod _{k=1}^n \overline{ c^{b+r-1} \mathcal {F}G\left( t_{k+1} - t_k, \cdot \right) \left( c^{b/a} \sum _{j=1}^k \xi _j \right) } c^n \mathrm {d} \vec {t} \end{aligned}$$

where in the last line we applied (3.6). Now,

$$\begin{aligned} \mathcal {F}f_n(\cdot ,0,ct)(\xi _1,\cdots , \xi _n)&= \int _{[0,t]^n_<} \prod _{k=1}^n \overline{ c^{b+r-1} \mathcal {F}G\left( t_{k+1} - t_k, \cdot \right) \left( c^{b/a} \sum _{j=1}^k \xi _j \right) } c^n \mathrm {d} \vec {t} \\&= c^{n(b+r)} \mathcal {F}f_n\left( \cdot ,0,t\right) \left( c^{b/a}\xi _1, \cdots , c^{b/a}\xi _n\right) , \end{aligned}$$

from which we see that

$$\begin{aligned}&\int _0^\infty e^{-t} \left\| {\widetilde{f}}_n(\cdot ,0,t) \right\| _{\mathcal {H}^{\otimes n}}^2 \mathrm {d} t = \int _0^\infty e^{-t} \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0;t)(\xi _1,\cdots ,\xi _n) \right| ^2 \mu (\mathrm {d} \vec {\xi }\,) \mathrm {d} t \\&\quad = \int _0^\infty e^{-2t} \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0;2t)(\xi _1,\cdots ,\xi _n) \right| ^2 \mu (\mathrm {d} \vec {\xi }\,) \, 2\, \mathrm {d} t \\&\quad = 2^{2n(b+r)}\int _0^\infty 2e^{-2t} \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0,t)(2^{b/a}\xi _1,\cdots ,2^{b/a}\xi _n) \right| ^2 \mu (\mathrm {d} \vec {\xi }\,) \mathrm {d} t \end{aligned}$$

where in the last line we have applied (3.7). Now,

$$\begin{aligned}&\int _0^\infty e^{-t} \left\| {\widetilde{f}}_n(\cdot ,0,t) \right\| _{\mathcal {H}^{\otimes n}}^2 \mathrm {d} t = 2^{2n(b+r)}\int _0^\infty 2e^{-2t} \\&\quad \quad \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0,t)(2^{b/a}\xi _1,\cdots ,2^{b/a}\xi _n) \right| ^2 \mu (\mathrm {d} \vec {\xi }\,) \mathrm {d} t \\&\quad = 2^{2n(b+r)}\int _0^\infty 2e^{-2t} \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0;t)(\xi _1,\cdots ,\xi _n) \right| ^2 2^{\frac{-nbd}{a}} 2^{\frac{nb(d-\alpha )}{a}} \mu (\mathrm {d} \vec {\xi }\,) \mathrm {d} t \end{aligned}$$

where the last line follows from a change of variables and recalling that \(\mu (\mathrm {d} \vec {\xi }\,)\) in (3.17). Lastly,

$$\begin{aligned}&\int _0^\infty e^{-t} \left\| {\widetilde{f}}_n(\cdot ,0,t) \right\| _{\mathcal {H}^{\otimes n}}^2 \mathrm {d} t = 2^{2n(b+r)}\int _0^\infty 2e^{-2t} \\&\quad \quad \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0;t)(\xi _1,\cdots ,\xi _n) \right| ^2 2^{\frac{-nbd}{a}} 2^{\frac{nb(d-\alpha )}{a}} \mu (\mathrm {d} \vec {\xi }\,) \mathrm {d} t \\&\quad = 2^{n(2(b+r) - b\alpha /a)} \int _0^\infty 2e^{-2t} \int _{\mathbb {R}^{nd}} \left| \mathcal {F}\widetilde{f_n}(\cdot ,0;t)(\xi _1,\cdots ,\xi _n) \right| ^2 \mu (\mathrm {d} \vec {\xi }\,) \mathrm {d} t \\&\quad = \frac{2^{n(2(b+r) - b\alpha /a)}}{(n!)^2} \int _0^\infty 2e^{-2t} \int _{\mathbb {R}^{nd}} H_n(t,\vec {x})^2 \mathrm {d} \vec {x} \mathrm {d} t, \end{aligned}$$

which proves (4.9). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Eisenberg, N. Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics. Stoch PDE: Anal Comp 11, 1203–1253 (2023). https://doi.org/10.1007/s40072-022-00258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-022-00258-6

Keywords

Mathematics Subject Classification

Navigation