Skip to main content
Log in

Variational solutions to nonlinear stochastic differential equations in Hilbert spaces

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

One introduces a new variational concept of solution for the stochastic differential equation \(dX+A(t)X\,dt+{\lambda }X\,dt=X\,dW, t\in (0,T)\); \(X(0)=x\) in a real Hilbert space where \(A(t)={\partial }{\varphi }(t), t\in (0,T)\), is a maximal monotone subpotential operator in H while W is a Wiener process in H on a probability space \(\{{\Omega },{\mathcal {F}},\mathbb {P}\}\). In this new context, the solution \(X=X(t,x)\) exists for each \(x\in H\), is unique, and depends continuously on x. This functional scheme applies to a general class of stochastic PDE so far not covered by the classical variational existence theory (Krylov and Rozovskii in J Sov Math 16:1233–1277, 1981; Liu and Röckner in Stochastic partial differential equations: an introduction, Springer, Berlin, 2015; Pardoux in Equations aux dérivées partielles stochastiques nonlinéaires monotones, Thèse, Orsay, 1972) and, in particular, to stochastic variational inequalities and parabolic stochastic equations with general monotone nonlinearities with low or superfast growth to \(+\infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  2. Barbu, V.: A variational approach to stochastic nonlinear problems. J. Math. Anal. Appl. 384, 2–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbu, V.: Optimal control approach to nonlinear diffusion equations driven by Wiener noise. J. Optim. Theory Appl. 153, 1–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V.: A variational approach to nonlinear stochastic differential equations with linear multiplicative noise (submitted)

  5. Barbu: Existence for nonlinear finite dimensional stochastic differential equations of subgradient type. Math. Control Relat. Fields (to appear)

  6. Barbu, V., Brzezniak, Z., Hausenblas, E., Tubaro, L.: Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise. Stoch. Process. Appl. 123, 934–951 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbu, V., Da Prato, G., Röckner, M.: Existence of strong solutions for stochastic porous media equations under general monotonicity conditions. Ann. Probab. 37(2), 428–452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbu, V., Da Prato, G., Röckner, M.: Stochastic Porous Media Equations. Lecture Notes in Mathematics, vol. 2163. Springer, Berlin (2016)

    MATH  Google Scholar 

  9. Barbu, V., Röckner, M.: Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise. Arch. Ration. Mech. Anal. 209, 797–834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbu, V., Röckner, M.: An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise. J. Eur. Math. Soc. 17, 1789–1815 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Ekeland, I.: Un principe variationnel associé à certains équations paraboliques, le cas indépendent du temps. C.R. Acad. Sci. Paris 282, 971–974 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Brooks, J.K., Dinculeanu, N.: Weak compactness in spaces of Bochner integrable functions and applications. Adv. Math. 24, 172–188 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 1992, 2nd edn. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  14. Gess, B., Röckner, M.: Stochastic variational inequalities and regularity for degenerate stochastic partial differential equations. Trans. Am. Math. Soc. 369, 3017–3045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233–1277 (1981)

    Article  MATH  Google Scholar 

  16. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  17. Pardoux, E.: Equations aux Dérivées Partielles Stochastiques Nonlinéaires Monotones. Thèse, Orsay (1972)

    MATH  Google Scholar 

  18. Prevot, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin (2007)

  19. Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math. 24, 525–539 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Visintin, A.: Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18, 633–680 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG through CRC 1283. V. Barbu was also partially supported by CNCS-UEFISCDI (Romania) through the Project PN-III-P4-ID-PCE-2016-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbu, V., Röckner, M. Variational solutions to nonlinear stochastic differential equations in Hilbert spaces. Stoch PDE: Anal Comp 6, 500–524 (2018). https://doi.org/10.1007/s40072-018-0114-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0114-0

Keywords

Mathematics Subject Classification

Navigation