Skip to main content
Log in

Abstract

We consider the variant of a stochastic parabolic Ginzburg-Landau equation that allows for the formation of point defects of the solution. The noise in the equation is multiplicative of the gradient type. We show that the family of the Jacobians associated to the solution is tight on a suitable space of measures. Our main result is the characterization of the limit points of this family. They are concentrated on finite sums of delta measures with integer weights. The point defects of the solution coincide with the points at which the delta measures are centered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrikosov, A.: On the magnetic properties of superconductors of the second type. ZhETP 32, 1442 (1957). [in Russian]

    Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Alouges, F., Soyeur, A.: On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18(11), 1071–1084 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu, V., Brzeźniak, Z., Hausenblas, E., Tubaro, L.: Existence and convergence results for infinite dimensional nonlinear stochastic equations with multiplicative noise. Stoch. Process. Appl. 123(3), 934–951 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barton-Smith, M.: Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise. Stoch. Anal. Appl. 22(1), 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston, MA (1994)

    MATH  Google Scholar 

  7. Bethuel, F., Orlandi, G., Smets, D.: Motion of concentration sets in Ginzburg-Landau equations. Ann. de la Faculté des sci. de Toulouse 13(1), 3–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billingsley, P.: Convergence of probability measures, second edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)

    Google Scholar 

  9. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  10. Brzeźniak, Z., Capiński, M., Flandoli, F.: A convergence result for stochastic partial differential equations. Stochastics 24(4), 423–445 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brzeźniak, Z., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Itô’s formula in UMD Banach spaces and regularity of solutions of the Zakai equation. J. Differ. Equ. 245(1), 30–58 (2008)

    Article  MATH  Google Scholar 

  12. Chugreeva, O.: Motion of the Ginzburg-Landau vortices for the mixed flow with convective forcing. Preprint at http://www.math1.rwth-aachen.de/de/forschung/preprints

  13. Chugreeva, O.: Stochastics meets applied analysis: stochastic Ginzburg-Landau vortices and stochastic Landau-Lifshitz-Gilbert equation. PhD Thesis at RWTH Aachen (2016), under review

  14. Colliander, J.E., Jerrard, R.L.: Vortex dynamics for the Ginzburg-Landau-Schrödinger equation. Int. Math. Res. Notices 7, 333–358 (1998)

    Article  MATH  Google Scholar 

  15. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, vol. 152. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  16. Deang, J., Du, Q., Gunzburger, M.D.: Stochastic dynamics of Ginzburg-Landau vortices in superconductors. Phys. Rev. B 64(5), 052,506 (2001)

    Article  Google Scholar 

  17. Deang, J., Du, Q., Gunzburger, M.D.: Modeling and computation of random thermal fluctuations and material defects in the Ginzburg-Landau model for superconductivity. J. Comput. Phys. 181(1), 45–67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Da Prato, G., Tubaro, L.: Some results on semilinear stochastic differential equations in Hilbert spaces. Stochastics 15(4), 271–281 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Doss, H.: Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. B (N.S.) 13(2), 99–125 (1977)

    MathSciNet  MATH  Google Scholar 

  20. E, W.: Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Physica D 77(4), 383–404 (1994)

  21. Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Google Scholar 

  22. Filipović, D., Tappe, S., Teichmann, J.: Jump-diffusions in Hilbert spaces: existence, stability and numerics. Stochastics 82(5), 475–520 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Flandoli, F.: Stochastic flows for nonlinear second-order parabolic SPDE. Ann. Prob. 24(2), 547–558 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Flandoli, F., Lisei, H.: Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications. Stoch. Anal. Appl. 22(6), 1385–1420 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  26. Ginzburg, V., Landau, L.: On the theory of superconductivity. ZhETP 20, 1064 (1950). [in Russian]

    Google Scholar 

  27. Jerrard, R.L., Soner, H.M.: Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142(2), 99–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jerrard, R.L., Soner, H.M.: The Jacobian and the Ginzburg-Landau energy. Calc. Var. Partial Differ. Equ. 14(2), 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jerrard, R.L., Spirn, D.: Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics. Arch. Ration. Mech. Anal. 190(3), 425–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)

    MATH  Google Scholar 

  31. Kuksin, S., Shirikyan, A.: Randomly forced CGL equation: stationary measures and the inviscid limit. J. Phys. A 37(12), 3805 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunita, H.: Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 24. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  33. Kurzke, M., Melcher, C., Moser, R., Spirn, D.: Dynamics for Ginzburg-Landau vortices under a mixed flow. Indiana Univ. Math. J. 58(6), 2597–2621 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ladyzhenskaya, O.A., Solonnikov, V., Uraltseva, N.N.: Lineinye i kvazilineinye uravneniya parabolicheskogo tipa. Izdat. Nauka, Moscow (1973). In Russian

    Google Scholar 

  35. Lin, F.H.: Some dynamical properties of Ginzburg-Landau vortices. Commun. Pure Appl. Math. 49(4), 323–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96. Springer Science & Business Media, New York (1994)

    MATH  Google Scholar 

  37. Miot, E.: Dynamics of vortices for the complex Ginzburg-Landau equation. Anal. PDE 2(2), 159–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Neu, J.C.: Vortices in complex scalar fields. Physica D 43(2–3), 385–406 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Röger, M., Weber, H.: Tightness for a stochastic Allen-Cahn equation. Stoch. Partial Differ. Equ. 1(1), 175–203 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sandier, E., Serfaty, S.: A product-estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211(1), 219–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser Boston Inc., Boston, MA (2007)

    MATH  Google Scholar 

  44. Sussmann, H.J.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Prob. 6(1), 19–41 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vakhania, N., Tarieladze, V., Chobanyan, S.: Probability Distributions on Banach Spaces, vol. 14. Springer Science & Business Media, Dordrecht (1987)

    Book  Google Scholar 

  46. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems. Springer, New York (1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous referees for their comments which helped to improve the manuscript. This work contains some results from the PhD thesis [13] of the first author. The first author has been supported by the German Academic Exchange Service (DAAD) Grant A/10/86352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Chugreeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugreeva, O., Melcher, C. Vortices in a stochastic parabolic Ginzburg-Landau equation. Stoch PDE: Anal Comp 5, 113–143 (2017). https://doi.org/10.1007/s40072-016-0083-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-016-0083-0

Keywords

Mathematics Subject Classification

Navigation