Skip to main content
Log in

High-resolution 352 nm range fluorescence spectra for carbon-14 formaldehyde

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Carbon-14 isotope separation technologies are important in various fields especially in the nuclear industry for radioactive waste treatment. Nowadays, laser isotope separation of carbon-14 based on photo-dissociation of formaldehyde molecule has become feasible. To develop this technology, spectral information of formaldehyde isotopologues is essential. We constructed a fluorescence spectroscopic setup including a tunable ultraviolet laser system to measure the carbon-14 formaldehyde spectrum. We also developed an evaporation process, involving self-enrichment of formaldehyde to obtain fluorescence signals using limited concentrations and amounts of samples. We demonstrate that the formaldehyde fluorescence spectra are in the 28,371–28,432 cm−1 wavelength region, and identify the individual 14CH2O peaks and estimate their absorption cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Ruben, M.D. Kamen, Phys. Rev. 57, 549 (1940)

    Article  ADS  Google Scholar 

  2. I. Hajdas et al., Nat. Rev. Methods Primers 1, 62 (2021). (and references therein)

    Article  Google Scholar 

  3. W. Kutschera, Int. J. Mass Spectrom. 349–350, 203 (2013)

    Article  Google Scholar 

  4. A. Zazzo, J.-F. Saliège, Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 52 (2011)

    Article  Google Scholar 

  5. Q. Hua et al., Radiocarbon 64, 723 (2022)

    Article  Google Scholar 

  6. V. Barbin, F. Taran, D. Audisio, JACS Au 2, 1234 (2022)

    Article  Google Scholar 

  7. E.M. Isin et al., Chem. Res. Toxicol. 25, 532 (2012)

    Article  Google Scholar 

  8. M. Calvin, A.A. Benson, Science 107, 476 (1948)

    Article  ADS  Google Scholar 

  9. D. Roberts, Drug Discovery World, Custom carbon-14 radiolabelling: investing to meet new challenging. http://ddw-online.com (2009), Accessed 23 Feb. 2024

  10. N.K. Katiyar, S. Goel, Nucl. Sci. Technol. 34, 33 (2023)

    Article  Google Scholar 

  11. M.-S. Yim, F. Caron, Prog. Nucl. Energy 48, 2 (2006)

    Article  Google Scholar 

  12. W. Sohn, D.-W. Kang, W.-S. Kim, J. Nucl. Sci. Technol. 40, 604 (2003)

    Article  Google Scholar 

  13. F. H. Chang et. al., United State Patent, No. 5286468 (1994)

  14. M. Gunther, Quotient carbon-14 quota with recycling plant, http://chmestyworld.com (1. Mar. 2016). Accessed 23 Feb. 2024

  15. R.E.M. Hedge, C.B. Moore, Nature 276, 2 (1978)

    Article  Google Scholar 

  16. L. Mannik, S.K. Brown, Appl. Phys. B 37, 79 (1985)

    Article  ADS  Google Scholar 

  17. D Jeong et. al., Korean Patent, No. 10–1329082 (2013)

  18. I.N. Knyazev et al., Appl. Phys. 17, 427 (1978)

    Article  ADS  Google Scholar 

  19. O.N. Avatcov et al., Appl. Opt. 23, 26 (1984)

    Article  ADS  Google Scholar 

  20. V. Parthasarathy, A.K. Nayak, S.K. Sarkar, Proc. Indian Acad. Sci. 114, 439 (2002)

    Article  Google Scholar 

  21. V.B. Laptev, S.V. Pigul’skii, E.A. Ryabov, Bull. Lebedev. Phys. Inst. 50, S418 (2023)

    Article  ADS  Google Scholar 

  22. M. Polianski, O.V. Boyarkin, T.R. Rizzo, J. Chem. Phys. 121, 11771 (2004)

    Article  ADS  Google Scholar 

  23. J.H. Clark et al., Chem. Phys. Lett. 35, 82 (1982)

    Article  ADS  Google Scholar 

  24. J. Marling, J. Chem. Phys. 66, 4200 (1977)

    Article  ADS  Google Scholar 

  25. P.L. Houston, C.M. Moore, J. Chem. Phys. 65, 757 (1976)

    Article  ADS  Google Scholar 

  26. L. Mannik, S.K. Brown, J. Appl. Phys. 53, 6620 (1982)

    Article  ADS  Google Scholar 

  27. M. Kim et al., Comput. Theor. Chem. 1054, 46 (2015)

    Article  Google Scholar 

  28. Y. Cha, B. Chun, H. Park, J. Korean Phys. Soc. 82, 1157 (2023)

    Article  ADS  Google Scholar 

  29. H. Salami, A.J. Ross, J. Mol. Spect. 233, 157 (2005)

    Article  ADS  Google Scholar 

  30. K.S. Kuramshina, K.A. Pavlova, A molecular iodine atlas. ARPN J. Eng. Appl. Sci. 11, 9655 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2022-00155423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghee Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Cha, Y., Lee, L. et al. High-resolution 352 nm range fluorescence spectra for carbon-14 formaldehyde. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01092-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01092-w

Keywords

Navigation