Skip to main content
Log in

Common origin of dark matter, baryon asymmetry and neutrino masses in the standard model with extended scalars

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We propose a model that simultaneously addresses the existence of a dark matter candidate, baryon asymmetry and tiny neutrino masses and mixing by introducing two SU(2) triplet scalars and an inert SU(2) doublet scalar on top of the standard model. The two triplet scalars serve as mediators in generation of lepton asymmetry and determination of relic density of dark matter. They also play an essential role in the generation of tiny neutrino masses and inducing CP violation. The inert scalar is regarded as a dark matter candidate. The interference due to complex Breit–Wigner propagators for the triplets will result in CP-asymmetry that depends on the difference between their masses and a relative complex phase between their couplings to standard model leptons. Moreover, the production of lepton asymmetry will be closely tied to the evolution of dark matter, limiting the parameter space where the correct relic abundance and matter–antimatter asymmetry can be simultaneously accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Aghanim et al. [Planck], Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]. [erratum: Astron. Astrophys. 652, C4 (2021)]. https://doi.org/10.1051/0004-6361/201833910e

  2. A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). https://doi.org/10.1070/PU1991v034n05ABEH002497

    Article  Google Scholar 

  3. S. Weinberg, Cosmological production of baryons. Phys. Rev. Lett. 42, 850–853 (1979). https://doi.org/10.1103/PhysRevLett.42.850

    Article  ADS  Google Scholar 

  4. E.W. Kolb, S. Wolfram, Baryon number generation in the early universe. Nucl. Phys. B172, 224 (1980). https://doi.org/10.1016/0550-3213(80)90167-4. [Erratum: Nucl. Phys. B195, 542(1982)]. https://doi.org/10.1016/0550-3213(82)90012-8

  5. M. Fukugita, T. Yanagida, Baryogenesis without grand unification. Phys. Lett. B 174, 45–47 (1986). https://doi.org/10.1016/0370-2693(86)91126-3

    Article  ADS  Google Scholar 

  6. R.L. Workman et al. [Particle Data Group], Review of particle physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097

  7. A. Dasgupta, P.S. Bhupal Dev, S.K. Kang, Y. Zhang, New mechanism for matter-antimatter asymmetry and connection with dark matter. Phys. Rev. D 102(5), 055009 (2020). https://doi.org/10.1103/PhysRevD.102.055009. arXiv:1911.03013 [hep-ph]

  8. N.G. Deshpande, E. Ma, Pattern of symmetry breaking with two Higgs doublets. Phys. Rev. D 18, 2574 (1978). https://doi.org/10.1103/PhysRevD.18.2574

    Article  ADS  Google Scholar 

  9. L. Lopez Honorez, E. Nezri, J.F. Oliver, M.H.G. Tytgat, The inert doublet model: an archetype for dark matter. JCAP 02, 028 (2007). https://doi.org/10.1088/1475-7516/2007/02/028. arXiv:hep-ph/0612275 [hep-ph]

  10. M. Gustafsson, The inert doublet model and its phenomenology. PoS CHARGED2010, 030 (2010). https://doi.org/10.22323/1.114.0030. arXiv:1106.1719 [hep-ph]

  11. A. Arhrib, Y.L.S. Tsai, Q. Yuan, T.C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC. JCAP 06, 030 (2014). https://doi.org/10.1088/1475-7516/2014/06/030. arXiv:1310.0358 [hep-ph]

    Article  ADS  Google Scholar 

  12. A. Belyaev, G. Cacciapaglia, I.P. Ivanov, F. Rojas-Abatte, M. Thomas, Anatomy of the inert two Higgs doublet model in the light of the LHC and non-LHC dark matter searches. Phys. Rev. D 97(3), 035011 (2018). https://doi.org/10.1103/PhysRevD.97.035011. arXiv:1612.00511 [hep-ph]

    Article  ADS  Google Scholar 

  13. Y.Z. Fan, T.P. Tang, Y.L.S. Tsai, L. Wu, Inert Higgs dark matter for CDF II W-Boson mass and detection prospects. Phys. Rev. Lett. 129(9), 091802 (2022). https://doi.org/10.1103/PhysRevLett.129.091802. arXiv:2204.03693 [hep-ph]

    Article  ADS  Google Scholar 

  14. L.F. Li, Y. Liu, L. Wolfenstein, Hidden Higgs particles. Phys. Lett. B 159, 45–48 (1985). https://doi.org/10.1016/0370-2693(85)90117-0

    Article  ADS  Google Scholar 

  15. M. Lusignoli, A. Masiero, M. Roncadelli, Spontaneous versus explicit breaking of a continuous global symmetry. Phys. Lett. B 252, 247–250 (1990). https://doi.org/10.1016/0370-2693(90)90868-7

    Article  ADS  MathSciNet  Google Scholar 

  16. C.A. de S.Pires, Explicitly broken lepton number at low energy in the Higgs triplet model. Mod. Phys. Lett. A 21, 971–978 (2006). https://doi.org/10.1142/S0217732306019347. arXiv:hep-ph/0509152

    Article  ADS  Google Scholar 

  17. F.F. Freitas, C.A.D.S. Pires, P.S. Rodrigues da Silva, Inverse type II seesaw mechanism and its signature at the LHC and ILC. Phys. Lett. B 769, 48–56 (2017). https://doi.org/10.1016/j.physletb.2017.03.016. arXiv:1408.5878 [hep-ph]

    Article  ADS  Google Scholar 

  18. C.A. de Sousa Pires, F Ferreira De Freitas, J. Shu, L. Huang, P Wagner Vasconcelos. Olegário, Implementing the inverse type-II seesaw mechanism into the 3-3-1 model. Phys. Lett. B 797, 134827 (2019). https://doi.org/10.1016/j.physletb.2019.134827. arXiv:1812.10570 [hep-ph]

    Article  Google Scholar 

  19. P.M. Ferreira, B.L. Gonçalves, F.R. Joaquim, The hidden side of scalar-triplet models with spontaneous CP violation. JHEP 05, 105 (2022). https://doi.org/10.1007/JHEP05(2022)105. arXiv:2109.13179 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Pich, P. Tuzon, Yukawa alignment in the two-Higgs-doublet model. Phys. Rev. D 80, 091702 (2009). https://doi.org/10.1103/PhysRevD.80.091702. arXiv:0908.1554 [hep-ph]

    Article  ADS  Google Scholar 

  21. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7

    Article  ADS  Google Scholar 

  22. J.A. Harvey, M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation. Phys. Rev. D 42, 3344–3349 (1990). https://doi.org/10.1103/PhysRevD.42.3344

    Article  ADS  Google Scholar 

  23. M. D’Onofrio, K. Rummukainen, A. Tranberg, Sphaleron rate in the minimal standard model. Phys. Rev. Lett. 113(14), 141602 (2014). https://doi.org/10.1103/PhysRevLett.113.141602. arXiv:1404.3565 [hep-ph]

    Article  ADS  Google Scholar 

  24. A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model. Comput. Phys. Commun. 184, 1729–1769 (2013). https://doi.org/10.1016/j.cpc.2013.01.014. arXiv:1207.6082 [hep-ph]

    Article  ADS  Google Scholar 

  25. M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, NuFIT: three-flavour global analyses of neutrino oscillation experiments. Universe 7(12), 459 (2021). https://doi.org/10.3390/universe7120459. arXiv:2111.03086 [hep-ph]

    Article  ADS  Google Scholar 

  26. NuFIT. http://www.nu-fit.org/

  27. [CMS], A search for doubly-charged Higgs boson production in three and four lepton final states at \(\sqrt{s}=13~{{\rm TeV}}\). CMS-PAS-HIG-16-036. https://cds.cern.ch/record/2242956

  28. M. Aaboud et al. [ATLAS], Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton–proton collisions at \(\sqrt{s}=13\,\text{TeV}\). Eur. Phys. J. C 78(3), 199 (2018). https://doi.org/10.1140/epjc/s10052-018-5661-z. arXiv:1710.09748 [hep-ex]

  29. G. Belanger, A. Mjallal, A. Pukhov, Recasting direct detection limits within micrOMEGAs and implication for non-standard dark matter scenarios. Eur. Phys. J. C 81(3), 239 (2021). https://doi.org/10.1140/epjc/s10052-021-09012-z. arXiv:2003.08621 [hep-ph]

    Article  ADS  Google Scholar 

  30. E. Aprile et al. [XENON], First dark matter search with nuclear recoils from the XENONnT experiment. Phys. Rev. Lett. 131(4), 041003 (2023). https://doi.org/10.1103/PhysRevLett.131.041003. arXiv:2303.14729 [hep-ex]

  31. H. Abdalla et al. [H.E.S.S.], Search for dark matter annihilation signals in the H.E.S.S. inner galaxy survey. Phys. Rev. Lett. 129(11), 111101 (2022). https://doi.org/10.1103/PhysRevLett.129.111101. arXiv:2207.10471 [astro-ph.HE]

  32. D.S. Akerib et al. [LZ], Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D 101(5), 052002 (2020). https://doi.org/10.1103/PhysRevD.101.052002. arXiv:1802.06039 [astro-ph.IM]

  33. H. Zhang et al. [PandaX], Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62(3), 31011 (2019). https://doi.org/10.1007/s11433-018-9259-0. arXiv:1806.02229 [physics.ins-det]

  34. J. Billard, M. Boulay, S. Cebrián, L. Covi, G. Fiorillo, A. Green, J. Kopp, B. Majorovits, K. Palladino, F. Petricca et al., Direct detection of dark matter—APPEC committee report*. Rep. Prog. Phys. 85(5), 056201 (2022). https://doi.org/10.1088/1361-6633/ac5754. arXiv:2104.07634 [hep-ex]

  35. T.B. de Melo, F.S. Queiroz, Y. Villamizar, Doubly charged scalar at the high-luminosity and high-energy LHC. Int. J. Mod. Phys. A 34(27), 1950157 (2019). https://doi.org/10.1142/S0217751X19501574. arXiv:1909.07429 [hep-ph]

  36. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 59, 135–157 (1980). https://doi.org/10.1007/978-1-4684-7571-5_9

    Article  Google Scholar 

  37. A. Pilaftsis, Resonant CP violation induced by particle mixing in transition amplitudes. Nucl. Phys. B 504, 61–107 (1997). https://doi.org/10.1016/S0550-3213(97)00469-0. arXiv:hep-ph/9702393

    Article  ADS  Google Scholar 

  38. E. Roulet, L. Covi, F. Vissani, On the CP asymmetries in Majorana neutrino decays. Phys. Lett. B 424, 101–105 (1998). https://doi.org/10.1016/S0370-2693(98)00135-X. arXiv:hep-ph/9712468

    Article  ADS  Google Scholar 

  39. A. Pilaftsis, Heavy Majorana neutrinos and baryogenesis. Int. J. Mod. Phys. A 14, 1811–1858 (1999). https://doi.org/10.1142/S0217751X99000932. arXiv:hep-ph/9812256

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Admir Greljo and Apostolos Pilaftsis for useful comments. This work was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin Kyu Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Apppendix A: Extended scalar sector

The scalar potential we consider includes two \(SU(2)_L\) triplets, \(\Delta _1\) and \(\Delta _2\), and one inert \(SU(2)_L\) doublet, \(\Phi _2\), in addition to the Higgs doublet of the SM, \(\Phi _1\). The decomposition of the scalar fields is given explicitly in Eq. (1). We also consider an additional \(Z_2\) symmetry under which \(\Phi _2\) is odd, while the rest of the fields are even. The most general potential can be written as:

$$\begin{aligned} V = {}&V_\textrm{IDM} + V_{\Delta } + V_{H\Delta } + V_\textrm{SB}, \end{aligned}$$
(25)
$$\begin{aligned} V_\textrm{IDM} = {}&- m_{\Phi 1}^2 \Phi _1^\dagger \Phi _1 + m_{\Phi 2}^2 \Phi _2^\dagger \Phi _2 \nonumber \\&+ \lambda _{\Phi 1} (\Phi _1^\dagger \Phi _1)^2 + \lambda _{\Phi 2} (\Phi _2^\dagger \Phi _2)^2 \nonumber \\&+ \lambda _{\Phi 12} \Phi _1^\dagger \Phi _1 \Phi _2^\dagger \Phi _2 \nonumber \\&+ \lambda '_{\Phi 12} \Phi _1^\dagger \Phi _2 \Phi _2^\dagger \Phi _1 + \lambda _5 \textrm{Re}\left[ (\Phi _1^\dagger \Phi _2)^2\right] \end{aligned}$$
(26)
$$\begin{aligned} V_{\Delta } = {}&\sum _{n=1}^2 \left\{ M_n^2 {{\,\textrm{Tr}\,}}\left( \Delta _n^\dagger \Delta _n\right) + \lambda _{\Delta n} {{\,\textrm{Tr}\,}}\left[ \left( \Delta _n^\dagger \Delta _n\right) ^2\right] \right. \nonumber \\&\left. + \lambda '_{\Delta n} \left[ {{\,\textrm{Tr}\,}}\left( \Delta _n^\dagger \Delta _n\right) \right] ^2\right\} \nonumber \\&+ \lambda _{\Delta 12} {{\,\textrm{Tr}\,}}(\Delta _1^\dagger \Delta _1 \Delta _2^\dagger \Delta _2)\nonumber \\&+ \lambda '_{\Delta 12} {{\,\textrm{Tr}\,}}(\Delta _1^\dagger \Delta _1) {{\,\textrm{Tr}\,}}(\Delta _2^\dagger \Delta _2) \nonumber \\&+ \lambda _{\Delta 21} {{\,\textrm{Tr}\,}}(\Delta _2^\dagger \Delta _1 \Delta _1^\dagger \Delta _2)\nonumber \\&+ \lambda '_{\Delta 21} {{\,\textrm{Tr}\,}}(\Delta _2^\dagger \Delta _1) {{\,\textrm{Tr}\,}}(\Delta _1^\dagger \Delta _2) \end{aligned}$$
(27)
$$\begin{aligned} V_{\Phi \Delta } = {}&\sum _{n=1}^{2}\sum _{k=1}^{2}\left[ \lambda _{\Phi k\Delta n} \Phi _k^\dagger \Phi _k {{\,\textrm{Tr}\,}}\left( \Delta _n^\dagger \Delta _n\right) \right. \nonumber \\&\left. + \lambda '_{\Phi k\Delta n} \Phi _k^\dagger \Delta _n \Delta _n^\dagger \Phi _k \right] \end{aligned}$$
(28)
$$\begin{aligned} V_\text {SB} = {}&\sum _{m=1}^2 \left\{ \sum _{n=1}^2 \mu _{nm} \Phi _m^T i\sigma ^2\Delta _n^\dagger \Phi _m \right. \nonumber \\&\left. + \lambda _{\Phi k\Delta 12} \Phi _m^\dagger \Phi _m {{\,\textrm{Tr}\,}}\left( \Delta _1^\dagger \Delta _2 \right) + \lambda '_{\Phi k\Delta 12} \Phi _m^\dagger \Delta _1 \Delta _2^\dagger \Phi _m\right\} \nonumber \\&M_{12}^2 {{\,\textrm{Tr}\,}}\left( \Delta _1^\dagger \Delta _2\right) + \sum _{ijkl} \left[ \lambda _{ijkl} {{\,\textrm{Tr}\,}}\left( \Delta _i^\dagger \Delta _j \Delta _k^\dagger \Delta _l\right) \right. \nonumber \\&\left. + \lambda '_{ijkl} {{\,\textrm{Tr}\,}}\left( \Delta _i^\dagger \Delta _j\right) \left( \Delta _k^\dagger \Delta _l\right) \right] + \text {H.c.} \end{aligned}$$
(29)

The terms in \(V_{SB}\) break a global U(1) symmetry. The combination of indices (ijkl) can take the values (2, 1, 1, 1), (1, 2, 1, 1), (1, 2, 2, 2), (2, 1, 2, 2) and (1, 2, 1, 2); other combinations belong to the H.c. part of the potential. After electroweak symmetry breaking, the scalar fields \(\Phi _1\), \(\Delta _1\) and \(\Delta _2\) acquire VEVs of the form

$$\begin{aligned} \langle \Phi _1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ v \end{pmatrix},\quad \langle \Delta _{n}\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 0 &{} 0 \\ u_n &{} 0 \end{pmatrix}. \end{aligned}$$
(30)

Similarly to Ref. [19], we will use \(u_1^2 + u_2^2 = u^2\), with \(u_1 = u\cos \beta \), \(u_2 = u\sin \beta \) and \(\tan \beta = u_2/u_1\). The VEVs must follow the condition \(v^2 + 2u^2 \approx (246\ \text {GeV})^2,\) which limits u to be below 8 GeV due to constraints on the \(\rho \) parameter. From the first derivatives of the potential, we can find the following conditions:

$$\begin{aligned} 0 = {}&\lambda _{\Phi 1} v^2 - m^2_{\Phi 1} + u^2 \left( \lambda ^q_{\Phi 1 \Delta 1} \cos ^2\beta \right. \nonumber \\&\left. + \lambda ^q_{\Phi 1\Delta 2} \sin ^2\beta + 2 \lambda ^q_{\Phi 1 \Delta 12} \cos \beta \sin \beta \right) \nonumber \\&- \sqrt{2} u \left( \mu _{11} \cos \beta + \mu _{21} \sin \beta \right) , \end{aligned}$$
(31)
$$\begin{aligned} 0 = {}&u^3 \left[ (\lambda ^q_{12} + \lambda ^q_{1212}) \cos \beta \sin ^2\beta + \lambda ^q_1 \cos ^3\beta \right. \nonumber \\&\left. + 3 \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cos ^2\beta \sin \beta + \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \sin ^3\beta \right] \nonumber \\&+ u \left[ M^2_1 \cos \beta + M^2_{12} \sin \beta + \lambda ^q_{\Phi 1\Delta 12} v^2 \sin \beta \right. \nonumber \\&\left. + \lambda ^q_{\Phi 1\Delta 1} v^2 \cos \beta \right] - \frac{\mu _{11}}{\sqrt{2}} v^2 , \end{aligned}$$
(32)
$$\begin{aligned} 0 = {}&u^3 \left[ (\lambda ^q_{12} + \lambda ^q_{1212}) \cos ^2\beta \sin \beta + \lambda ^q_2 \sin ^3\beta \right. \nonumber \\&\left. + 3 \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \cos \beta \sin ^2\beta + \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cos ^3\beta \right] \nonumber \\&+ u \left[ M^2_2 \sin \beta + M^2_{12} \cos \beta + \lambda ^q_{\Phi 1\Delta 12} v^2 \cos \beta \right. \nonumber \\&\left. + \lambda ^q_{\Phi 1\Delta 2} v^2 \sin \beta \right] - \frac{\mu _{21}}{\sqrt{2}} v^2, \end{aligned}$$
(33)

where we used the following definitions:

$$\begin{aligned} \lambda ^q_n \equiv {}&\lambda _{\Delta n} + \lambda '_{\Delta n}, \end{aligned}$$
(34)
$$\begin{aligned} \lambda ^q_{\Phi 1\Delta n} \equiv {}&(\lambda _{\Phi 1\Delta n} + \lambda '_{\Phi 1\Delta n})/2, \end{aligned}$$
(35)
$$\begin{aligned} \lambda ^q_{12} \equiv {}&(\lambda _{\Delta 12} + \lambda _{\Delta 21} + \lambda '_{\Delta 12} + \lambda '_{\Delta 21})/2, \end{aligned}$$
(36)
$$\begin{aligned} \lambda ^q_{\Phi 1\Delta 12} \equiv {}&(\lambda _{\Phi 1\Delta 12} + \lambda '_{\Phi 1\Delta 12})/2, \end{aligned}$$
(37)
$$\begin{aligned} \lambda ^q_{1212} \equiv {}&\lambda _{1212} + \lambda '_{1212} \end{aligned}$$
(38)
$$\begin{aligned} \lambda ^q_{2111} \equiv {}&(\lambda _{2111} + \lambda _{1211})/2, \end{aligned}$$
(39)
$$\begin{aligned} \lambda ^{q\prime }_{2111} \equiv {}&(\lambda '_{2111} + \lambda '_{1211})/2, \end{aligned}$$
(40)
$$\begin{aligned} \lambda ^q_{1222} \equiv {}&(\lambda _{1222} + \lambda _{2122})/2, \end{aligned}$$
(41)
$$\begin{aligned} \lambda ^{q\prime }_{1222} \equiv {}&(\lambda '_{1222} + \lambda '_{2122})/2. \end{aligned}$$
(42)

From these conditions we can rewrite \(m^2_{\Phi 1}\), \(M^2_1\) and \(M^2_2\) as

$$\begin{aligned} m^2_{\Phi 1} = {}&\lambda _{\Phi 1} v^2 + u^2 \left( \lambda ^q_{\Phi 1 \Delta 1} \cos ^2\beta \right. \nonumber \\&\left. + \lambda ^q_{\Phi 1\Delta 2} \sin ^2\beta + 2 \lambda ^q_{\Phi 1 \Delta 12} \cos \beta \sin \beta \right) \nonumber \\&- \sqrt{2} u \left( \mu _{11} \cos \beta + \mu _{21} \sin \beta \right) \end{aligned}$$
(43)
$$\begin{aligned} M^2_1 = {}&- u^2 \cos ^2\beta \left[ \lambda ^q_1 + 3 \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \tan \beta \right. \nonumber \\&\left. + (\lambda ^q_{12} + \lambda ^q_{1212}) \tan ^2\beta + \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan ^3\beta \right] \nonumber \\&- v^2 \left( \lambda ^q_{\Phi 1\Delta 1} + \lambda ^q_{\Phi 1\Delta 12} \tan \beta \right) \nonumber \\&- M^2_{12} \tan \beta + \frac{\mu _{11} v^2}{\sqrt{2}u \cos \beta } \end{aligned}$$
(44)
$$\begin{aligned} M^2_2 = {}&- u^2 \sin ^2\beta \left[ \lambda ^q_2 + 3 \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \cot \beta + (\lambda ^q_{12} + \lambda ^q_{1212}) \cot ^2\beta \right. \nonumber \\&\left. + \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot ^3\beta \right] \nonumber \\&- v^2 \left( \lambda ^q_{\Phi 1\Delta 2} + \lambda ^q_{\Phi 1\Delta 12} \cot \beta \right) \nonumber \\&- M^2_{12} \cot \beta + \frac{\mu _{21} v^2}{\sqrt{2}u \sin \beta }. \end{aligned}$$
(45)

1.1 Apppendix B: Neutral states masses

Consider the following expansion of the neutral states:

$$\begin{aligned} \delta ^0_n = \frac{\rho _n + i\eta _n}{\sqrt{2}}. \end{aligned}$$
(46)

We can take the base of the neutral states as \(S^0_\textrm{even} = (h_1, \rho _1, \rho _2)\). In such a basis, we have a \(3\times 3\) mass matrix for the CP-even neutral scalars, \(M^2_\textrm{even}\), which is symmetric and has elements given by:

$$\begin{aligned} \left( M^2_\textrm{even}\right) _{11} = {}&2 \lambda _{\Phi 1} v^{2} \end{aligned}$$
(47)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{12} = {}&v \left[ 2 u \left( \lambda ^q_{\Phi 1\Delta 1} \cos \beta + \lambda ^q_{\Phi 1\Delta 12} \sin \beta \right) - \sqrt{2} \mu _{11}\right] \end{aligned}$$
(48)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{13} = {}&v \left[ 2 u \left( \lambda ^q_{\Phi 1\Delta 2} \sin \beta + \lambda ^q_{\Phi 1\Delta 12} \cos \beta \right) - \sqrt{2} \mu _{21}\right] \end{aligned}$$
(49)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{22} = {}&u^2 \cos ^2\beta \left[ 2 \lambda ^q_{1} + 3 \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \tan \beta \right. \nonumber \\&\left. - \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan ^3\beta \right] \nonumber \\&+ \frac{\mu _{11} v^2}{\sqrt{2} u \cos \beta } - (M^2_{12} + \lambda ^q_{\Phi 1\Delta 12} v^2) \tan \beta \end{aligned}$$
(50)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{23} = {}&u^2 \cos \beta \sin \beta \left[ 2 (\lambda ^q_{12} + \lambda ^q_{1212}) + 3 \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta \right. \nonumber \\&\left. + 3 \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right] \nonumber \\&+ M^2_{12} + \lambda ^q_{\Phi 1\Delta 12} v^2 \end{aligned}$$
(51)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{33} = {}&u^2 \sin ^2\beta \left[ 2 \lambda ^q_{2} + 3 \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \cot \beta \right. \nonumber \\&\left. - \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot ^3\beta \right] \nonumber \\&+ \frac{\mu _{21} v^2}{\sqrt{2} u \sin \beta } - (M^2_{12} + \lambda ^q_{\Phi 1\Delta 12}) \cot \beta . \end{aligned}$$
(52)

For the CP-odd states, we can take the basis \(S^0_\textrm{odd} = (\eta _1, \eta _2)\), obtaining the mass matrix elements

$$\begin{aligned} \left( M^2_\textrm{odd}\right) _{11} = {}&- u^2 \sin ^2\beta \left[ 2 \lambda ^q_{1212} + \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta \right. \nonumber \\&\left. + \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right] \nonumber \\&+ \frac{\mu _{11} v^2}{\sqrt{2} u \cos \beta } - (M^2_{12} + \lambda ^q_{\Phi 1\Delta 12} v^2) \tan \beta , \end{aligned}$$
(53)
$$\begin{aligned} \left( M^2_\textrm{odd}\right) _{12} = {}&u^2 \cos \beta \sin \beta \left[ 2 \lambda ^q_{1212} + \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta \right. \nonumber \\&\left. + \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right] \nonumber \\&+ M^2_{12} + \lambda ^q_{\Phi 1\Delta 12} v^2, \end{aligned}$$
(54)
$$\begin{aligned} \left( M^2_\textrm{odd}\right) _{22} = {}&- u^2 \cos ^2\beta \left[ 2 \lambda ^q_{1212} + \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta \right. \nonumber \\&\left. + \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right] \nonumber \\&+ \frac{\mu _{21} v^2}{\sqrt{2} u \sin \beta } - (M^2_{12} + \lambda ^q_{\Phi 1\Delta 12} v^2) \cot \beta . \end{aligned}$$
(55)

The rest of the neutral scalars do not mix and the squared masses are given by the expressions:

$$\begin{aligned} m_{H^0}^2 = {}&u^2 \left[ \left( \lambda _{\Phi 2\Delta 1} + \lambda '_{\Phi 2\Delta 1}\right) \frac{\cos ^2\beta }{2} \right. \nonumber \\&\left. + \left( \lambda _{\Phi 2\Delta 2} + \lambda '_{\Phi 2\Delta 2}\right) \frac{ \sin ^2\beta }{2} + \left( \lambda _{\Phi 2\Delta 12} + \lambda '_{\Phi 2\Delta 12}\right) \cos \beta \sin \beta \right] \nonumber \\&- \sqrt{2} u (\mu _{12} \cos \beta + \mu _{22} \sin \beta ) + m^2_{\Phi 2} \nonumber \\&+ \frac{v^2}{2}\left( \lambda _{\Phi 12} + \lambda '_{\Phi 12} + \lambda _5\right) \end{aligned}$$
(56)
$$\begin{aligned} m_{A^0}^2 = {}&u^2 \left[ \left( \lambda _{\Phi 2\Delta 1} + \lambda '_{\Phi 2\Delta 1}\right) \frac{\cos ^2\beta }{2} \right. \nonumber \\&\left. + \left( \lambda _{\Phi 2\Delta 2} + \lambda '_{\Phi 2\Delta 2}\right) \frac{ \sin ^2\beta }{2} + \left( \lambda _{\Phi 2\Delta 12} + \lambda '_{\Phi 2\Delta 12}\right) \cos \beta \sin \beta \right] \nonumber \\&+ \sqrt{2} u (\mu _{12} \cos \beta + \mu _{22} \sin \beta )\nonumber \\&+ m^2_{\Phi 2} + \frac{v^2}{2}\left( \lambda _{\Phi 12} + \lambda '_{\Phi 12} - \lambda _5\right) . \end{aligned}$$
(57)

In this case, the difference between the masses of these two scalars is given by

$$\begin{aligned} m_{A^0}^2 - m_{H^0}^2 = - \lambda _5 v^2 + 2\sqrt{2} u (\mu _{12} \cos \beta + \mu _{22} \sin \beta ), \end{aligned}$$
(58)

which is positive (negative) when \(H^0\) (\(A^0\)) is the DM candidate.

1.2 Charged states masses

In the scalar potentia,l we have three single charged scalars, \(\Phi _2^\pm \), \(\delta _1^\pm \) and \(\delta _2^\pm \), and two doubly charged scalars, \(\delta _1^{\pm \pm }\) and \(\delta _2^{\pm \pm }\). The usual charged Higgs present in two Higgs doublet models does not mix with other charged scalars and its squared mass is given by

$$\begin{aligned} M_{\Phi _2^\pm }^2= & {} m_{\Phi 2}^2 + \frac{\lambda _{\Phi 12}}{2} v^2 + u^2 \sin \beta \cos \beta \nonumber \\{} & {} \left( \lambda _{\Phi 2\Delta 12} + \frac{\lambda _{\Phi 2\Delta 1}}{2} \cot \beta + \frac{\lambda _{\Phi 2\Delta 2}}{2} \tan \beta \right) . \end{aligned}$$
(59)

Note that the terms additional to the mass in the original IDM have a factor of \(u^2\). Since we expect \(u^2 \ll v^2\) these extra terms can be considered small corrections. The two single-charge scalars from the triplets mix and the \(2\times 2\) matrix has the followings elements:

$$\begin{aligned} \left( M^2_{\delta ^\pm }\right) _{11} = {}&u^2 \sin ^2\beta \left[ \frac{\lambda '_{\Delta 12}}{4} - \frac{\lambda '_{\Delta 21}}{4} - \frac{\lambda ^q_{12}}{2} - \lambda ^q_{1212} \right. \nonumber \\&\left. - \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta - \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right] \nonumber \\&- M^2_{12} \tan \beta - v^2 \left( \lambda ^q_{\Phi 1\Delta 12} \tan \beta + \frac{\lambda '_{\Phi 1\Delta 1}}{4} \right) \nonumber \\&+ \frac{\mu _{11} v^2}{\sqrt{2} u \cos \beta }\,, \end{aligned}$$
(60)
$$\begin{aligned} \left( M^2_{\delta ^\pm }\right) _{12} = {}&u^2 \sin \beta \cos \beta \left( - \frac{\lambda '_{\Delta 12}}{4} + \frac{\lambda '_{\Delta 21}}{4} + \frac{\lambda ^q_{12}}{2} + \lambda ^q_{1212} \right. \nonumber \\&\left. + \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta + \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right) \nonumber \\&+M^2_{12} + v^2 \left( \lambda ^q_{\Phi 1\Delta 12} - \frac{\lambda '_{\Phi 1\Delta 12}}{4} \right) \,, \end{aligned}$$
(61)
$$\begin{aligned} \left( M^2_{\delta ^\pm }\right) _{22} = {}&u^2 \cos ^2\beta \left( \frac{\lambda '_{\Delta 12}}{4} - \frac{\lambda '_{\Delta 21}}{4} - \frac{\lambda ^q_{12}}{2} - \lambda ^q_{1212} \right. \nonumber \\&\left. - \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222}\right) \tan \beta - \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111}\right) \cot \beta \right) \nonumber \\&-M^2_{12} \cot \beta - v^2 \left( \lambda ^q_{\Phi 1\Delta 12} \cot \beta + \frac{\lambda '_{\Phi 1\Delta 2}}{4} \right) \nonumber \\&+ \frac{\mu _{21} v^2}{\sqrt{2} u \sin \beta } \,. \end{aligned}$$
(62)

The doubly charged scalars mix with each other resulting in the following matrix elements:

$$\begin{aligned} \left( M^2_{\delta ^{\pm \pm }}\right) _{11} = {}&u^2 \cos ^2\beta \bigg [ \lambda '_{\Delta 1} - \lambda ^q_1 - \tan \beta \left( 3 \lambda ^q_{2111} + \lambda ^{q\prime }_{2111} \right) \nonumber \\&- \tan ^2\beta \left( \lambda ^q_{12} + \lambda ^q_{1212} - \frac{\lambda '_{\Delta 12}}{2} \right) \nonumber \\&- \tan ^3\beta \left( \lambda ^q_{1222} + \lambda ^{q\prime }_{1222} \right) \bigg ] \nonumber \\&+ v^2 \left( \frac{\mu _{11}}{\sqrt{2} u \cos \beta } - \frac{\lambda '_{\Phi 1\Delta 1}}{2} - \lambda ^q_{\Phi 1\Delta 12} \tan \beta \right) \nonumber \\&- M^2_{12} \tan \beta , \end{aligned}$$
(63)
$$\begin{aligned} \left( M^2_{\delta ^{\pm \pm }}\right) _{12} = {}&u^2 \sin \beta \cos \beta \left[ \frac{\lambda '_{\Delta 21}}{2} + \lambda '_{1212} + \lambda ^{q\prime }_{1222} \tan \beta + \lambda ^{q\prime }_{2111} \cot \beta \right] \nonumber \\&+ M^2_{12} + v^2 \left( \lambda ^q_{\Phi 1\Delta 12} - \frac{\lambda '_{\Phi 1\Delta 12}}{2} \right) , \end{aligned}$$
(64)
$$\begin{aligned} \left( M^2_{\delta ^{\pm \pm }}\right) _{22} = {}&u^2 \sin ^2\beta \nonumber \\&\bigg [ \lambda '_{\Delta 2} - \lambda ^q_{2} - \cot \beta \left( 3 \lambda ^q_{1222} + \lambda ^{q\prime }_{1222} \right) \nonumber \\&- \cot ^2\beta \left( \lambda ^q_{12} + \lambda ^q_{1212} - \frac{\lambda '_{\Delta 12}}{2} \right) \nonumber \\&- \cot ^3\beta \left( \lambda ^q_{2111} + \lambda ^{q\prime }_{2111} \right) \bigg ] \nonumber \\&+ v^2 \left( \frac{\mu _{21}}{\sqrt{2} u \sin \beta } - \frac{\lambda '_{\Phi 1\Delta 2}}{2} - \lambda ^q_{\Phi 1\Delta 12} \cot \beta \right) \nonumber \\&- M^2_{12} \cot \beta . \end{aligned}$$
(65)

1.3 The no-mixing limit

In the case where \(u \ll v\) and assuming that the couplings in \(V_{SB}\) are smaller than other couplings in the potential, the non-diagonal terms in mass matrices shown in this appendix become subleading contributions. We can call this the no-mixing limit. A small value for u can be justified by the need of having small neutrino masses, while small couplings in \(V_{SB}\) can be considered due to naturalness [36]. The leading contributions to the diagonal elements are

$$\begin{aligned} \left( M^2_\textrm{even}\right) _{11}&= 2\lambda _{\Phi 1} v^2 \end{aligned}$$
(66)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{22}&= \left( M^2_\textrm{odd}\right) _{11} = \left( M^2_{\delta ^{\pm }}\right) _{11} \nonumber \\&= \left( M^2_{\delta ^{\pm \pm }}\right) _{11} = \frac{\mu _{11} v^2}{\sqrt{2} u \cos \beta }, \end{aligned}$$
(67)
$$\begin{aligned} \left( M^2_\textrm{even}\right) _{33}&= \left( M^2_\textrm{odd}\right) _{22} = \left( M^2_{\delta ^{\pm }}\right) _{22} \nonumber \\&= \left( M^2_{\delta ^{\pm \pm }}\right) _{22} = \frac{\mu _{21} v^2}{\sqrt{2} u \sin \beta }, \end{aligned}$$
(68)

with all the diagonal elements suppressed either by u or couplings from \(V_{SB}\). The squared mass of the SM-like Higgs, \(m_h^2\), can be identified with \(2\lambda _{\Phi 1} v^2\). For the triplets, all the masses of the fields in each triplet become degenerated and we can write \(M_{\Delta 1}^2 = \mu _{11} v^2/\sqrt{2} u \cos \beta \) and \(M_{\Delta 2}^2 = \mu _{21} v^2/\sqrt{2} u \sin \beta \), for all the scalars contained in the triplets. In the case of the masses for the dark scalars, \(H^0\), \(A^0\) and \(\Phi _2^{\pm }\), it is easy to see that their masses fallback to the values in the original IDM.

Unitarity and CPT

It has been noted in the past that the amount of CP violation from 2-to-2 scatterings is constrained by unitarity and CPT [37,38,39]. In this appendix, we comment briefly on unitarity and CPT in the scatterings considered in Sect. 4. First of all, unitarity requires that all the scatterings with final or initial state \(L_l L_m\) follow the condition

$$\begin{aligned} \sum _j |\mathcal {M}(j \rightarrow L_l L_m)|^2 = \sum _j |\mathcal {M}(L_l L_m \rightarrow j)|^2, \end{aligned}$$
(69)

where j represents possible initial and final states that have to be summed over, and l and m represent flavors in the corresponding state. Separating the \(\Phi _2\Phi _2\) pairs from the sum (see Eqs. (13) to (15)), we can write

$$\begin{aligned} |\mathcal {M}&(\Phi _2\Phi _2 \rightarrow L_l L_m)|^2 + \sum _{j\ne \Phi _2 \Phi _2} |\mathcal {M}(j \rightarrow L_l L_m)|^2 \nonumber \\&= |\mathcal {M}(L_l L_m \rightarrow \Phi _2\Phi _2)|^2 + \sum _{j\ne \Phi _2 \Phi _2} |\mathcal {M}(L_l L_m \rightarrow j)|^2\,. \end{aligned}$$
(70)

Now the states summed over in j include scalars from \(\Phi _1\), \(\Delta _n\) and pairs of leptons. For example, considering processes mediated by \(\Delta _n\), the scalars that are present in j belong to trilinear couplings that can be read off from the potential after expanding around VEVs. After using CPT invariance on the left-f-side of Eq. (70) and reordering terms we obtain

$$\begin{aligned} |\mathcal {M}&(\Phi _2\Phi _2 \rightarrow L_l L_m)|^2 - |\mathcal {M}(\Phi _2^*\Phi _2^* \rightarrow \bar{L}_l \bar{L}_m)|^2 \nonumber \\&= \sum _{j\ne \Phi _2 \Phi _2} |\mathcal {M}(j_\text {CPT} \rightarrow \bar{L}_l \bar{L}_m)|^2\nonumber \\&\quad - \sum _{j\ne \Phi _2 \Phi _2} |\mathcal {M}(j \rightarrow L_l L_m)|^2\,. \end{aligned}$$
(71)

Note that in the right-hand side of this equation, processes with \(j = L_l L_m\) (same initial and final flavor) cancel each other. Considering that both sides of this equation have processes mediated by \(\Delta _1\) and \(\Delta _2\), the same effects from interferences due to the relative phase from \(\xi \), ensure that both sides are non-zero. The left-hand side of Eq. (71) contributes to having non-zero scattering in Eq. (19). From the Boltzmann equation in Eq. (17), this leads to an accumulation of non-zero lepton asymmetry that builds-up as DM evolves toward freeze out.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.K., Ramos, R. Common origin of dark matter, baryon asymmetry and neutrino masses in the standard model with extended scalars. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01080-0

Keywords

Navigation