Skip to main content
Log in

Dijet invariant mass distribution near threshold

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, using soft-collinear effective theory, we study the invariant mass distribution for dijet production in \(e^+e^-\)-annihilation. Near threshold, where the dijet takes most of the energy, there arise the large threshold logarithms, which are sensitive to soft gluon radiations. To systematically resum the logarithms, we factorize the scattering cross-section into the hard, the collinear, and the soft parts. And we additionally factorize the original soft part into the global soft function and the two collinear-soft functions, where the latter can be combined with the collinear parts to form the fragmentation functions to jet (FFJs). The factorization theorem derived here can be easily applicable to other processes near threshold. Using the factorized result, we show the resummed result for the dijet invariant mass to the accuracy of next-to-leading logarithms. We have also obtained the result in the case of the heavy quark dijet and compared it with the case of the light quark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Interestingly, like the FFJ, the FF to a heavy hadron can be additionally factorized as the collinear (\(\mu _c \sim m\)) and the csoft (\(\mu _{cs} \sim m(1-z)\)) functions [34, 35]

  2. If we consider the dijet production at the LHC, the relevant global soft function can be obtained by subtracting the csoft contributions to the parton distribution functions as well as to the FFJs in the final states [11].

References

  1. C.W. Bauer, S. Fleming, M.E. Luke, Phys. Rev. D 63, 014006 (2000). https://doi.org/10.1103/PhysRevD.63.014006. arXiv:hep-ph/0005275 [hep-ph]

    Article  ADS  Google Scholar 

  2. C.W. Bauer, S. Fleming, D. Pirjol, I.W. Stewart, Phys. Rev. D 63, 114020 (2001). https://doi.org/10.1103/PhysRevD.63.114020. arXiv:hep-ph/0011336 [hep-ph]

    Article  ADS  Google Scholar 

  3. C.W. Bauer, D. Pirjol, I.W. Stewart, Phys. Rev. D 65, 054022 (2002). https://doi.org/10.1103/PhysRevD.65.054022. arXiv:hep-ph/0109045 [hep-ph]

    Article  ADS  Google Scholar 

  4. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein, I.W. Stewart, Phys. Rev. D 66, 014017 (2002). https://doi.org/10.1103/PhysRevD.66.014017. arXiv:hep-ph/0202088 [hep-ph]

    Article  ADS  Google Scholar 

  5. A.V. Manohar, I.W. Stewart, Phys. Rev. D 76, 074002 (2007). https://doi.org/10.1103/PhysRevD.76.074002. arXiv:hep-ph/0605001 [hep-ph]

    Article  ADS  Google Scholar 

  6. J.-Y. Chiu, A. Jain, D. Neill, I.Z. Rothstein, Phys. Rev. Lett. 108, 151601 (2012). https://doi.org/10.1103/PhysRevLett.108.151601. arXiv:1104.0881 [hep-ph]

    Article  ADS  Google Scholar 

  7. J.-Y.Chiu, A. Jain, D. Neill, I. Z. Rothstein, JHEP 05,084, https://doi.org/10.1007/JHEP05(2012)084arXiv:1202.0814 [hep-ph]

  8. C.W. Bauer, F.J. Tackmann, J.R. Walsh, S. Zuberi, Phys. Rev. D 85, 074006 (2012). https://doi.org/10.1103/PhysRevD.85.074006. arXiv:1106.6047 [hep-ph]

    Article  ADS  Google Scholar 

  9. T. Becher, M. Neubert, L. Rothen, D.Y. Shao, Phys. Rev. Lett. 116, 192001 (2016). https://doi.org/10.1103/PhysRevLett.116.192001. arXiv:1508.06645 [hep-ph]

    Article  ADS  Google Scholar 

  10. Y.-T. Chien, A. Hornig, C. Lee, Phys. Rev. D 93, 014033 (2016). https://doi.org/10.1103/PhysRevD.93.014033. arXiv:1509.04287 [hep-ph]

    Article  ADS  Google Scholar 

  11. N. Kidonakis, G. Oderda, G.F. Sterman, Nucl. Phys. B 525, 299 (1998). https://doi.org/10.1016/S0550-3213(98)00243-0. arXiv:hep-ph/9801268

    Article  ADS  Google Scholar 

  12. J. Chay, C. Kim, Phys. Rev. D 97, 094024 (2018). https://doi.org/10.1103/PhysRevD.97.094024. arXiv:1710.02284 [hep-ph]

    Article  ADS  Google Scholar 

  13. T. Kaufmann, A. Mukherjee, W. Vogelsang, Phys. Rev. D 92, 054015 (2015). https://doi.org/10.1103/PhysRevD.92.054015. arXiv:1506.01415 [hep-ph]

    Article  ADS  Google Scholar 

  14. Z.-B. Kang, F. Ringer, I. Vitev, JHEP 10, 125, https://doi.org/10.1007/JHEP10(2016)125arXiv:1606.06732 [hep-ph]

  15. L. Dai, C. Kim, A.K. Leibovich, Phys. Rev. D 94, 114023 (2016). https://doi.org/10.1103/PhysRevD.94.114023. arXiv:1606.07411 [hep-ph]

    Article  ADS  Google Scholar 

  16. L. Dai, C. Kim, A.K. Leibovich, Phys. Rev. D 95, 074003 (2017). https://doi.org/10.1103/PhysRevD.95.074003. arXiv:1701.05660 [hep-ph]

    Article  ADS  Google Scholar 

  17. S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993). https://doi.org/10.1016/0550-3213(93)90166-M

    Article  ADS  Google Scholar 

  18. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). https://doi.org/10.1103/PhysRevD.48.3160. arXiv:hep-ph/9305266 [hep-ph]

    Article  ADS  Google Scholar 

  19. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, JHEP 08, 001, https://doi.org/10.1088/1126-6708/1997/08/001arXiv:hep-ph/9707323 [hep-ph]

  20. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063, https://doi.org/10.1088/1126-6708/2008/04/063arXiv:0802.1189 [hep-ph]

  21. W.M.-Y. Cheung, M. Luke, S. Zuberi, Phys. Rev. D 80, 114021 (2009). https://doi.org/10.1103/PhysRevD.80.114021. arXiv:0910.2479 [hep-ph]

    Article  ADS  Google Scholar 

  22. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig, C. Lee, JHEP 11, 101, https://doi.org/10.1007/JHEP11(2010)101arXiv:1001.0014 [hep-ph]

  23. J. Chay, C. Kim, I. Kim, Phys. Rev. D 92, 034012 (2015). https://doi.org/10.1103/PhysRevD.92.034012. arXiv:1505.00121 [hep-ph]

    Article  ADS  Google Scholar 

  24. P. Hinderer, F. Ringer, G.F. Sterman, W. Vogelsang, Phys. Rev. D 91, 014016 (2015). https://doi.org/10.1103/PhysRevD.91.014016. arXiv:1411.3149 [hep-ph]

    Article  ADS  Google Scholar 

  25. L. Dai, C. Kim, A.K. Leibovich, JHEP 09, 109, https://doi.org/10.1007/JHEP09(2018)109arXiv:1805.06014 [hep-ph]

  26. L. Dai, C. Kim, A.K. Leibovich, JHEP 09, 148, https://doi.org/10.1007/JHEP09(2021)148arXiv:2104.14707 [hep-ph]

  27. C. Kim, J. Korean Phys. Soc. 77, 469 (2020). https://doi.org/10.3938/jkps.77.469. arXiv:2008.02942 [hep-ph]

    Article  ADS  Google Scholar 

  28. G.P. Korchemsky, A.V. Radyushkin, Nucl. Phys. B 283, 342 (1987). https://doi.org/10.1016/0550-3213(87)90277-X

    Article  ADS  Google Scholar 

  29. I.A. Korchemskaya, G.P. Korchemsky, Phys. Lett. B 287, 169 (1992). https://doi.org/10.1016/0370-2693(92)91895-G

    Article  ADS  Google Scholar 

  30. M. Dasgupta, G.P. Salam, Phys. Lett. B 512, 323 (2001). https://doi.org/10.1016/S0370-2693(01)00725-0. arXiv:hep-ph/0104277 [hep-ph]

    Article  ADS  Google Scholar 

  31. A. Banfi, G. Marchesini, G. Smye, JHEP 08, 006, https://doi.org/10.1088/1126-6708/2002/08/006arXiv:hep-ph/0206076 [hep-ph]

  32. M. Balsiger, T. Becher, A. Ferroglia, JHEP 09, 029, https://doi.org/10.1007/JHEP09(2020)029arXiv:2006.00014 [hep-ph]

  33. C. Bierlich et al., SciPost Phys. Codeb. 2022, 8 (2022). https://doi.org/10.21468/SciPostPhysCodeb.8. arXiv:2203.11601 [hep-ph]

    Article  Google Scholar 

  34. M. Neubert, (2007), arXiv:0706.2136 [hep-ph]

  35. M. Fickinger, S. Fleming, C. Kim, E. Mereghetti, JHEP 11, 095, https://doi.org/10.1007/JHEP11(2016)095arXiv:1606.07737 [hep-ph]

Download references

Acknowledgements

This study was supported by the Research Program funded by Seoul National University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Kim or Taehyun Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Kwon, T. Dijet invariant mass distribution near threshold. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01075-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01075-x

Keywords

Navigation