Skip to main content
Log in

Thermoelectric properties of mechanically alloyed Cu3Sb1–y(Al/In)yS4 famatinites

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Cu3Sb1–y(Al/In)yS4 (0 ≤ y ≤ 0.08) famatinite compounds were synthesized, and phase analysis was conducted based on the Al or In doping level, followed by an examination of charge transport and thermoelectric properties. All specimens exhibited a tetragonal famatinite phase and demonstrated high-relative densities ranging from 97.2 to 99.5%. Al doping notably decreases the a-axis (0.5228–0.5231 nm) and marginally increases the c-axis (1.0764–1.0770 nm), whereas In doping marginally decreases the a-axis (0.5377–0.5380 nm) and significantly increases the c-axis (1.0781–1.0791 nm). The carrier concentration rose with increasing Al/In content, leading to an increase in electrical conductivity (σ), while the Seebeck coefficient (α) declined. The electrical conductivity increased to 450–1130 Sm−1 for Cu3Sb0.94Al0.06S4 and 250–1110 Sm−1 for Cu3Sb0.94In0.06S4 at 323–623 K. However, the Seebeck coefficient decreased to 105–243 μVK−1 for Cu3Sb0.94Al0.06S4 and 334–406 μVK−1 for Cu3Sb0.94In0.06S4 at 323–623 K. Consequently, the highest power factor of 0.18 mWm−1 K−2 was obtained at 623 K for Cu3Sb0.94In0.06S4. Cu3Sb0.96Al0.04S4 demonstrated the lowest thermal conductivity (κ), while Cu3Sb0.94In0.06S4 achieved the highest thermoelectric figure of merit (ZT = 0.16) at 623 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, 1995), pp.19–23

    Google Scholar 

  2. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics (Springer, Berlin, 2001), pp.1–13

    Google Scholar 

  3. E.J. Skoug, J.D. Cain, D.T. Morelli, J. Electron. Mater. 41, 1232 (2012)

    Article  ADS  Google Scholar 

  4. Z.H. Ge, L.D. Zhao, D. Wu, X. Liu, B.P. Zhang, J.F. Li, J. He, Mater. Today 19, 227 (2016)

    Article  Google Scholar 

  5. K.I. Amirkhanov, G.G. Gadzhiev, Y.B. Magomedov, High Temp. 16, 1050 (1978)

    Google Scholar 

  6. K. Chen, Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds, Ph.D. Thesis, UK: Queen Mary University of London (2016)

  7. B. Xu, X. Zhang, Y. Sun, J. Zhang, Y. Wang, L. Yi, J. Phys. Soc. Jpn. 83, 094606 (2014)

    Article  ADS  Google Scholar 

  8. D. Chen, Y. Zhao, Y. Chen, T. Lu, Y. Wang, J. Zhou, Z. Liang, Adv. Electron. Mater 2, 1500473 (2016)

    Article  Google Scholar 

  9. U. Chalapathi, B. Poornaprakash, S.H. Park, Cer. Intl. 43, 5229 (2017)

    Article  Google Scholar 

  10. K. Chen, B. Du, N. Bonini, C. Weber, H. Yan, M.J. Reece, J. Phys. Chem. C 120, 27135 (2016)

    Article  Google Scholar 

  11. A. Suzumura, M. Watanabe, N. Nagasako, R. Asahi, J. Electron. Mater. 43, 2356 (2014)

    Article  ADS  Google Scholar 

  12. Y. Goto, Y. Sakai, Y. Kamihara, M. Matoba, J. Phys. Soc. Jpn. 84, 044706 (2015)

    Article  ADS  Google Scholar 

  13. K. Chen, C.D. Paola, B. Du, R. Zhang, S. Laricchia, N. Bonini, C. Weber, I. Abrahams, H. Yan, M. Reece, J. Mater. Chem. C 6, 8546 (2018)

    Article  Google Scholar 

  14. M. Shen, S. Lu, Z. Zhang, H. Liu, W. Shen, C. Fang, Q. Wang, L. Chen, Y. Zhang, X. Jia, A.C.S. Appl, Mater. Interf. 12, 8271 (2020)

    Article  Google Scholar 

  15. J.H. Pi, G.E. Lee, I.H. Kim, J. Electron. Mater. 49, 2755 (2020)

    Article  ADS  Google Scholar 

  16. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  17. A.L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961)

    Article  Google Scholar 

  18. Y. Li, X. Qin, D. Li, X. Li, Y. Liu, J. Zhang, C. Son, H. Xin, RSC Adv. 5, 31399 (2015)

    Article  ADS  Google Scholar 

  19. O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004), p.385

    Book  Google Scholar 

  20. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  21. B. Madaval, S.J. Hong, J. Electron. Mater. 45, 6059 (2016)

    Article  ADS  Google Scholar 

  22. S.G. Kwak, J.H. Pi, G.E. Lee, I.H. Kim, Korean J. Met. Mater. 58, 272 (2020)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Kim, IH. Thermoelectric properties of mechanically alloyed Cu3Sb1–y(Al/In)yS4 famatinites. J. Korean Phys. Soc. (2024). https://doi.org/10.1007/s40042-024-01061-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40042-024-01061-3

Keywords

Navigation