Skip to main content
Log in

Investigation of the propagation of coupled laser pulses in a plasma

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, the propagation of an electromagnetic pulse due to the interaction of laser pulse and plasma was investigated using a set of fluid relativistic equations and Maxwell’s equations in an unmagnetized collisionless common plasma. Using the multiple scale perturbation approach, the dispersion relation and the group velocity were derived, and finally it was shown that the evaluation of the components of vector potential is governed by two coupled-nonlinear Schrödinger (NLS) equations. It should be noted that using the relations of the phase and group velocities we understated that they are independent from plasma parameters. Then, using analytical methods, the solutions of the amplitude of the coupled Schrodinger equations for both components of the vector potential were obtained. Analytically, the modulation instability conditions in terms of plasma parameters have been investigated. Finally, by plotting the figures, the modulation stability and instability regions are numerically studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The supportive data of the present research are available from the corresponding author upon reasonable request.

References

  1. P. Grelu, Opt. Commun. 552, 130035 (2024)

    Article  Google Scholar 

  2. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  3. Y. Lei, G. Shayeganrad, H. Wang et al., Light Sci. Appl. 12, 74 (2023)

    Article  ADS  Google Scholar 

  4. A. Abdikian, S. Ismaeel, Eur. Phys. J. Plus 132, 368 (2017)

    Article  Google Scholar 

  5. A. Abdikian, B. Ghanbari, Results Phys. 48, 106399 (2023)

    Article  Google Scholar 

  6. V. Malka, J. Faure, Y.A. Gauduel et al., Nat. Phys. 4, 447 (2008)

    Article  Google Scholar 

  7. A. Pukhov, Nat. Phys. 2, 439 (2006)

    Article  Google Scholar 

  8. C. Labaune, Nat. Phys. 3, 680 (2007)

    Article  Google Scholar 

  9. P.-T. Qian, X.-B. Zhang, C. Jiao et al., Phys. Plasmas 30, 012106 (2023)

    Article  ADS  Google Scholar 

  10. J. Borhanian, I. Kourakis, S. Sobhanian, Phys. Lett. A 373, 3667 (2009)

    Article  ADS  Google Scholar 

  11. J. Liu, H. Lu, H. Lu et al., Phys. Plasmas 30, 113103 (2023)

    Article  ADS  Google Scholar 

  12. H. Demiray, A. Abdikian, Indian J. Phys. 95, 1255 (2021)

    Article  ADS  Google Scholar 

  13. A. Abdikian, Phys. Plasmas 25, 022308 (2018)

    Article  ADS  Google Scholar 

  14. A. Abdikian, M. Mohebifar, S. Raj, Mod. Res. Phys 5, 0 (2021)

    Google Scholar 

  15. G. Sánchez-Arriaga, E. Siminos, V. Saxena et al., Phys. Rev. E 91, 033102 (2015)

    Article  ADS  Google Scholar 

  16. G. Sánchez-Arriaga, E. Siminos, J. Phys. A: Math. Theor. 50, 185501 (2017)

    Article  ADS  Google Scholar 

  17. T. Taniuti, N. Yajima, J. Mathe. Phys. 10, 1369 (1969)

    Article  ADS  Google Scholar 

  18. M. McKerr, F. Haas, I. Kourakis, Phys. Plasmas 23, 052120 (2016)

    Article  ADS  Google Scholar 

  19. B. Rajabi, M. Mohammadnejad, Phys. Plasmas 30, 082112 (2023)

    Article  ADS  Google Scholar 

  20. S. Roy, A.P. Misra, A. Abdikian, Phys. Fluids 35, 066123 (2023)

    Article  ADS  Google Scholar 

  21. J. Borhanian, Phys. Lett. A 6, 595 (2015)

    Article  Google Scholar 

  22. H. Demiray, A. Abdikian, Chaos Solitons Fractals 121, 50 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Fan, Phys. Lett. A 277, 212 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Hirota, J. Mathe. Phys. 14, 810 (1973)

    Article  ADS  Google Scholar 

  25. S. Liu, Z. Fu, S. Liu et al., Phys. Lett. A 289, 69 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Abdikian, S. Sultana, Phys. Scr. 96, 095602 (2021)

    Article  ADS  Google Scholar 

  27. B. Pradhan, A. Abdikian, A. Saha, Eur. Phys. J. D 75, 48 (2021)

    Article  ADS  Google Scholar 

  28. M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Aslan, T. Öziş, Appl. Math. Comput. 209, 425 (2009)

    MathSciNet  Google Scholar 

  30. A. Khare, A. Saxena, J. Mathe. Phys. 55, 032701 (2014)

    Article  ADS  Google Scholar 

  31. E. Fan, J. Phys. A: Math. Gen. 35, 6853 (2002)

    Article  ADS  Google Scholar 

  32. A. Abdikian, S.V. Farahani, Eur. Phys. J. Plus 137, 652 (2022)

    Article  Google Scholar 

  33. A. Abdikian, S. Vasheghani Farahani, S. Hussain, Mon. Not. R. Astron. Soc. 506, 997 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Alireza Abdikian.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Substitute \(\xi =x-2pst\) and \(\tau =t\) in Eqs. (26) and (27) and considering

$${a}_{x}(\xi ,\tau )={A}_{x}(\xi ){{\text{e}}}^{{\text{i}}(px+kt)}, {a}_{y}(\xi ,\tau )={A}_{y}(\xi ){{\text{e}}}^{{\text{i}}\left(px+kt\right),}$$
(36)

to obtain

$${Q}_{1}{{A}_{x}(\xi )}^{3}+{A}_{x}\left(\xi \right)\left(-k-{p}^{2}S+\left({Q}_{2}+{Q}_{3}\right){{A}_{y}\left(\xi \right)}^{2}\right)+S{A}_{x}^{^{\prime\prime} }\left(\xi \right)=0,$$
(37)
$$\left(-k-{p}^{2}S+\left({Q}_{2}+{Q}_{3}\right){{A}_{x}\left(\xi \right)}^{2}\right){A}_{y}\left(\xi \right)+{Q}_{1}{{A}_{y}\left(\xi \right)}^{3}+S{A}_{y}^{^{\prime\prime} }\left(\xi \right)=0,$$
(38)

Using the Jacobi elliptic function expansion method. One can assume \({A}_{x}\left(\xi \right)=\Phi \left(\xi \right)\) and \({A}_{y}\left(\xi \right)=\psi \left(\xi \right)\) as a finite series of Jacobi elliptic function (for example \(cn\)) and follow that method as [44,60]

$$\Phi \left(\xi \right)=\sum_{j=0}^{N}{a}_{j}{\varphi }^{j},$$
(39)
$$\uppsi \left(\xi \right)=\sum_{j=0}^{N}{b}_{j}{\varphi }^{j},$$
(40)

where \(\varphi \) is considered as one of the Jacobi elliptic functions \(sn\xi \), \(cn\xi \) and \(dn\xi \). By balancing between the highest order linear term and the nonlinear of eq. (A–1), one will realize that the value of \(N\) should be \(N=2\). Hence, the (A–1) equation may have the following form travelling wave equation

$$\Phi \left(\xi \right)={a}_{0}+{a}_{1}cn\xi +{a}_{2}{cn}^{2}\xi ,$$
(41)
$$\psi \left(\xi \right)={b}_{0}+{b}_{1}cn\xi +{b}_{2}{cn}^{2}\xi ,$$
(42)

Substituting eqs. (A–5) and (A–6) into (A–2) and (A–3), one can obtain

$$-k{a}_{0}-{p}^{2}S{a}_{0}+{Q}_{1}{{a}_{0}}^{3}+\left({Q}_{2}+{Q}_{3}\right){a}_{0}{{b}_{0}}^{2}+\left(-k{a}_{1}-{p}^{2}S{a}_{1}+3{Q}_{1}{{a}_{0}}^{2}{a}_{1}+\left({Q}_{2}+{Q}_{3}\right){a}_{1}{{b}_{0}}^{2}+2\left({Q}_{2}+{Q}_{3}\right){a}_{0}{b}_{0}{b}_{1}+S{a}_{1}{c}_{2}\right)cn\xi +\left(3{Q}_{1}{a}_{0}{{a}_{1}}^{2}+2\left({Q}_{2}+{Q}_{3}\right){a}_{1}{b}_{0}{b}_{1}+\left({Q}_{2}+{Q}_{3}\right){a}_{0}{{b}_{1}}^{2}\right){cn}^{2}\xi +{a}_{1}\left({Q}_{1}{{a}_{1}}^{2}+\left({Q}_{2}+{Q}_{3}\right){{b}_{1}}^{2}+2S{c}_{4}\right){cn}^{3}\xi ,$$
(43)
$$-k{b}_{0}-{p}^{2}S{b}_{0}+\left({Q}_{2}+{Q}_{3}\right){{a}_{0}}^{2}{b}_{0}+{Q}_{1}{{b}_{0}}^{3}+\left(2\left({Q}_{2}+{Q}_{3}\right){a}_{0}{a}_{1}{b}_{0}-k{b}_{1}-{p}^{2}S{b}_{1}+\left({Q}_{2}+{Q}_{3}\right){{a}_{0}}^{2}{b}_{1}+3{Q}_{1}{{b}_{0}}^{2}{b}_{1}+S{b}_{1}{c}_{2}\right)cn\xi +\left(\left({Q}_{2}+{Q}_{3}\right){{a}_{1}}^{2}{b}_{0}+2\left({Q}_{2}+{Q}_{3}\right){a}_{0}{a}_{1}{b}_{1}+3{Q}_{1}{b}_{0}{{b}_{1}}^{2}\right){cn}^{2}\xi +{b}_{1}\left(\left({Q}_{2}+{Q}_{3}\right){{a}_{1}}^{2}+{Q}_{1}{{b}_{1}}^{2}+2S{c}_{4}\right){cn}^{3}\xi =0,$$
(44)

and by substituting \({cn}^{2}\zeta =1-{sn}^{2}\zeta \) and \(d{n}^{2}\zeta =1-{m}^{2}+{m}^{2}{cn}^{2}\zeta \), and with the aid of Mathematica we can determine the coefficients

$${a}_{0}={b}_{0}=0, {b}_{1}=-i{a}_{1}=\sqrt{-\frac{2S{c}_{4}}{{Q}_{1}+{Q}_{2}+{Q}_{3}}}, {a}_{2}={b}_{2}=0, {c}_{2}={p}^{2}+\frac{k}{S}, {c}_{4}=-{c}_{2},$$
(45)

where \(p\) and \(k\) are fixed and arbitrary values.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Sekhavat, N., Abdikian, A. et al. Investigation of the propagation of coupled laser pulses in a plasma. J. Korean Phys. Soc. 84, 610–617 (2024). https://doi.org/10.1007/s40042-024-01024-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01024-8

Keywords

Navigation