Skip to main content
Log in

Structure constants of a single trace operator and determinant operators from hexagon

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the structure constant associated with a single trace operator and two determinant operators in \(\mathcal{N}=4\) super Yang–Mills theory. In the holographic framework, this quantity corresponds to the interaction vertex between a closed string and two open strings attached to spherical D-branes. Based on diagrammatic intuition, we propose a conjecture that the structure constant at finite coupling can be elegantly expressed in terms of hexagon form factors. Specifically, this involves the preparation of two hexagon twist operators and the appropriate gluing of edges by integrating contributions from mirror particles and contracting boundary states. The gluing process yields the worldsheet for a closed string and two open strings attached to the D-branes. At weak coupling, the asymptotic expression simplifies to a sum over all possible partitions, not only for the edge related to the closed string but also for the edges representing half of the open string, taking into account reflection effects for the opposite open string edges. We validate this conjecture by directly computing various tree-level structure constants, and our results align well with the proposed conjecture. In particular, we find that there are multiple contractions in the tree-level problem as in four-point function problems. This is consistent with the fact that the worldsheet we are studying has one-dimensional moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Recently, the computation of structure constants using hexagons has been extended to short operators, raising the possibility of overcoming previously perceived technical challenges [34].

  2. For a pedagogical review, see [36].

  3. The three-point function for an open string and two closed strings is similarly excluded, as there is nontrivial mixing between the D-brane part and the open string part.

  4. There are two different maximal giant gravitons which are, respectively, called \(Y=0\) brane and \(Z=0\) brane. Here, we are using the embedding coordinates of \(S^5\). Namely, \(|X|^2+|Y|^2+|Z|^2 =1\). In the ungauged string sigma model, there is no difference among them, since they are related to each other under SO(6) rotation. However, if we choose a light-cone gauge direction and fix the gauge along the direction, the giant graviton brane splits into two groups. One includes the light-cone gauge direction and the other does not. The former is called \(Y=0\) brane, and the latter is called \(Z=0\) brane. For example, the \(Z=0\) brane is wrapping on the \(S^3\) given as \(X {{{\bar{X}}}}+Y{{{\bar{Y}}}} =1\). In the dual gauge theory, they are, respectively, realized by the following determinant operators: \(\epsilon _{i_{1}\ldots i_{N}}^{j_{1}\ldots j_{N}} Z_{j_{1}}^{i_{1}}\ldots Z_{j_{N-1}}^{i_{N-1}} \left( Z^{L-M} \phi ^{M} \right) _{j_{N}}^{i_{N}}\) and \(\epsilon _{i_{1}\ldots i_{N}}^{j_{1}\ldots j_{N}} Y_{j_{1}}^{i_{1}}\ldots Y_{j_{N-1}}^{i_{N-1}} \left( Z^{L-M} \phi ^{M} \right) _{j_{N}}^{i_{N}}\). In this paper, we shall only consider open strings attached to the \(Y=0\) brane.

  5. Notice that there are two possible distributions to each hexagon even in open strings, since we cut the open string itself to the half. This feature is quite new compared to [22] where open strings were not cut.

  6. We should use the exact reflection matrix preserving SU(2|1) symmetry constructed in [38] when we express the open-chain part.

  7. As we shall comment later, there is additional sign changing.

  8. For further details, see Appendix A.

  9. For the open-chain from Wilson loop, the norm formula was studied in [22].

  10. See [16, 40, 41] for further discussion.

References

  1. N. Beisert et al., Review of \(AdS/CFT\) Integrability: An Overview. Lett. Math. Phys. 99, 3 (2012). arXiv:1012.3982

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Beisert, The SU(2|2) dynamic S-matrix. Adv. Theor. Math. Phys. 12, 948 (2008). arXiv:hep-th/0511082

    Article  MathSciNet  Google Scholar 

  3. R.A. Janik, The AdS(5) x S**5 superstring worldsheet S-matrix and crossing symmetry. Phys. Rev. D 73, 086006 (2006). arXiv:hep-th/0603038

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Beisert, B. Eden, M. Staudacher, Transcendentality and Crossing. J. Stat. Mech. 0701, P01021 (2007). arXiv:hep-th/0610251

    Google Scholar 

  5. G. Arutyunov, S. Frolov, M. Zamaklar, The Zamolodchikov-Faddeev algebra for \(AdS_5 \times S^5\) superstring. JHEP 0704, 002 (2007). arXiv:hep-th/0612229

    Article  ADS  Google Scholar 

  6. M. Staudacher, The Factorized S-matrix of CFT/AdS. JHEP 0505, 054 (2005). arXiv:hep-th/0412188

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Klose, T. McLoughlin, R. Roiban, K. Zarembo, Worldsheet scattering in AdS(5) x S**5. JHEP 0703, 094 (2007). arXiv:hep-th/0611169

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Beisert, M. Staudacher, Long-range \(psu(2,2|4)\) Bethe Ansatze for gauge theory and strings. Nucl. Phys. B 727, 1 (2005). arXiv:hep-th/0504190

    Article  ADS  Google Scholar 

  9. R.A. Janik, T. Lukowski, Wrapping interactions at strong coupling: The Giant magnon. Phys. Rev. D 76, 126008 (2007). arXiv:0708.2208

    Article  ADS  Google Scholar 

  10. Z. Bajnok, R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states. Nucl. Phys. B 807, 625 (2009). arXiv:0807.0399

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Gromov, V. Kazakov, S. Leurent, D. Volin, Quantum spectral curve for arbitrary state/operator in AdS\(_{5}\)/CFT\(_{4}\). JHEP 1509, 187 (2015). arXiv:1405.4857

    Article  ADS  Google Scholar 

  12. Z. Bajnok, R.A. Janik, String field theory vertex from integrability. JHEP 1504, 042 (2015). arXiv:1501.04533

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Basso, S. Komatsu, P. Vieira, “Structure Constants and Integrable Bootstrap in Planar N=4 SYM Theory,” arXiv:1505.06745

  14. Z. Bajnok, R.A. Janik, The kinematical AdS\(_{5} \times\) S\(^{5}\) Neumann coefficient. JHEP 1602, 138 (2016). arXiv:1512.01471

    Article  ADS  Google Scholar 

  15. Z. Bajnok, R.A. Janik, From the octagon to the SFT vertex - gluing and multiple wrapping. JHEP 1706, 058 (2017). arXiv:1704.03633

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Jiang, S. Komatsu, I. Kostov, D. Serban, The hexagon in the mirror: the three-point function in the SoV representation. J. Phys. A 49(17), 174007 (2016). arXiv:1506.09088

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Eden, A. Sfondrini, Three-point functions in \({\cal{N}}=4\) SYM: the hexagon proposal at three loops. JHEP 1602, 165 (2016). arXiv:1510.01242

    Article  ADS  MathSciNet  Google Scholar 

  18. B. Basso, V. Goncalves, S. Komatsu, P. Vieira, Gluing Hexagons at Three Loops. Nucl. Phys. B 907, 695 (2016). arXiv:1510.01683

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. B. Eden, A. Sfondrini, Tessellating cushions: four-point functions in \({\cal{N} }\) = 4 SYM. JHEP 1710, 098 (2017). arXiv:1611.05436

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Fleury, S. Komatsu, Hexagonalization of Correlation Functions. JHEP 1701, 130 (2017). arXiv:1611.05577

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Basso, V. Goncalves, S. Komatsu, Structure constants at wrapping order. JHEP 1705, 124 (2017). arXiv:1702.02154

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Kim, N. Kiryu, Structure constants of operators on the Wilson loop from integrability. JHEP 1711, 116 (2017). https://doi.org/10.1007/JHEP11(2017)116. [arXiv:1706.02989 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Kim, N. Kiryu, S. Komatsu, T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop. JHEP 1712, 055 (2017). arXiv:1710.07325

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Bargheer, J. Caetano, T. Fleury, S. Komatsu, P. Vieira, Handling Handles: Nonplanar Integrability in \({\cal{N} }=4\) Supersymmetric Yang-Mills Theory. Phys. Rev. Lett. 121(23), 231602 (2018). arXiv:1711.05326

    Article  ADS  PubMed  Google Scholar 

  25. T. Fleury, S. Komatsu, Hexagonalization of Correlation Functions II: Two-Particle Contributions. JHEP 1802, 177 (2018). arXiv:1711.05327

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Eden, Y. Jiang, M. de Leeuw, T. Meier, D. le Plat, A. Sfondrini, Positivity of hexagon perturbation theory. JHEP 1811, 097 (2018). arXiv:1806.06051

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Bargheer, J. Caetano, T. Fleury, S. Komatsu, P. Vieira, Handling handles. Part II. Stratification and data analysis. JHEP 1811, 095 (2018). arXiv:1809.09145

    Article  ADS  Google Scholar 

  28. J.M. Nieto, Cutting the cylinder into squares: The square form factor. JHEP 1903, 097 (2019). arXiv:1810.11430]

    Article  ADS  MathSciNet  Google Scholar 

  29. N. Kiryu, S. Komatsu, Correlation Functions on the Half-BPS Wilson Loop: Perturbation and Hexagonalization. JHEP 1902, 090 (2019). arXiv:1812.04593

    Article  ADS  MathSciNet  Google Scholar 

  30. B. Basso, J. Caetano, T. Fleury, “Hexagons and Correlators in the Fishnet Theory,” arXiv:1812.09794

  31. I. Kostov, V.B. Petkova, D. Serban, Determinant formula for the octagon form factor in \({\cal{N} }\)=4 SYM. Phys. Rev. Lett. 122(23), 231601 (2019). arXiv:1903.05038

    Article  ADS  CAS  PubMed  Google Scholar 

  32. T. Bargheer, F. Coronado, P. Vieira, “Octagons I: Combinatorics and Non-Planar Resummations,” arXiv:1904.00965

  33. I. Kostov, V. B. Petkova, D. Serban, “The Octagon as a Determinant,” arXiv:1905.11467

  34. B. Basso, A. Georgoudis, A.K. Sueiro, Structure Constants of Short Operators in Planar N=4 Supersymmetric Yang-Mills Theory. Phys. Rev. Lett. 130(13), 131603 (2023). arXiv:2207.01315

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  35. J.L. Cardy, O.A. Castro-Alvaredo, B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy. J. Statist. Phys. 130, 129 (2008). arXiv:0706.3384

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Komatsu, “Lectures on Three-point Functions in N=4 Supersymmetric Yang-Mills Theory,” arXiv:1710.03853

  37. D. Berenstein, S.E. Vazquez, Integrable open spin chains from giant gravitons. JHEP 0506, 059 (2005). arXiv:hep-th/0501078

    Article  ADS  MathSciNet  Google Scholar 

  38. D.M. Hofman, J.M. Maldacena, Reflecting magnons. JHEP 0711, 063 (2007). arXiv:0708.2272

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Ghoshal, A. B. Zamolodchikov, “Boundary S matrix and boundary state in two-dimensional integrable quantum field theory,” Int. J. Mod. Phys. A 9 (1994) 3841 Erratum: [Int. J. Mod. Phys. A 9 (1994) 4353] arXiv:hep-th/9306002

  40. A. Bissi, C. Kristjansen, D. Young, K. Zoubos, Holographic three-point functions of giant gravitons. JHEP 1106, 085 (2011). arXiv:1103.4079

    Article  ADS  MathSciNet  Google Scholar 

  41. P. Caputa, R. de Mello Koch, K. Zoubos, “Extremal versus Non-Extremal Correlators with Giant Gravitons,” JHEP 1208, 143 (2012) arXiv:1204.4172

  42. Z. Bajnok, L. Palla, Boundary finite size corrections for multiparticle states and planar AdS/CFT. JHEP 1101, 011 (2011). arXiv:1010.5617

    Article  ADS  MathSciNet  Google Scholar 

  43. H. Lin, O. Lunin, J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries. JHEP 0410, 025 (2004). arXiv:hep-th/0409174

    Article  ADS  MathSciNet  Google Scholar 

  44. R. de Mello Koch, C. Mathwin, J.R. van Zyl, LLM Magnons. JHEP 1603, 110 (2016). arXiv:1601.06914

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of KK and KL is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF- 2017R1A2B4004810) and GIST Research Institute (GRI) grant funded by the GIST in 2019, whereas the research of MK is supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation as well as funds received from the National Institute for Theoretical Physics (NITheP), and is also supported by the National Research Foundation of Korea Grants funded by the Korea government (MSIT), NRF-2020R1A6A1A03047877 (Center for Quantum Space Time), NRF-2022R1I1A1A01069032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minkyoo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: review on open spin chain

Appendix A: review on open spin chain

Here, we review the open spin-chain which is holographically dual to the open string attached to the \(Y=0\) brane [37]. The Hamiltonian is constructed by evaluating relevant boundary Feynman diagrams as well as bulk Feynman diagrams [37] and is explicitly given as

$$\begin{aligned} \begin{aligned} {\mathbb {H}}&=\frac{1}{2}\lambda \sum _{j=2}^{L-2}[ {{\mathbb {K}}}_{j,j+1}+2({{\mathbb {I}}}_{j,j+1}- {{\mathbb {P}}}_{j,j+1})]\\&\quad + \frac{1}{2} \lambda {{\mathbb {Q}}}_1^Y [ {{\mathbb {K}}}_{1,2}+2( {{\mathbb {I}}}_{1,2}- {{\mathbb {P}}}_{1,2})] {{\mathbb {Q}}}_1^Y\\&\quad + \frac{1}{2}\lambda {{\mathbb {Q}}}_L^Y [ {{\mathbb {K}}}_{L-1,L}+2( {{\mathbb {I}}}_{L-1,L}- {{\mathbb {P}}}_{L-1,L})] {{\mathbb {Q}}}_L^Y \\&\quad +\lambda ( {{\mathbb {I}}}- {{\mathbb {Q}}}_1^{{\bar{Y}}})+\lambda ( {{\mathbb {I}}}-{{\mathbb {Q}}}_L^{{\bar{Y}}}), \end{aligned} \end{aligned}$$
(A1)

where \({{\mathbb {I}}}_{j,j+1}\), \({{\mathbb {P}}}_{j,j+1}\), and \({{\mathbb {K}}}_{j,j+1}\) are, respectively, the identity operator, the permutation operator, and the trace operator acting on two adjacent sites \((j, j+1)\). The operator \(Q^\phi _n\) is a projection operator defined as

$$\begin{aligned} \begin{aligned}&Q^\phi _n \mid \cdots {\mathop {\phi }\limits ^{{\mathop {\downarrow }\limits ^{n}}}} \cdots \rangle = 0 \\&Q^\phi _n \mid \cdots {\mathop {\psi }\limits ^{{\mathop {\downarrow }\limits ^{n}}}} \cdots \rangle = \mid \cdots {\mathop {\psi }\limits ^{{\mathop {\downarrow }\limits ^{n}}}} \cdots \rangle . \end{aligned} \end{aligned}$$
(A2)

Namely, if the field at the nth site is the same with \(\phi\) in \(Q^\phi _n\), the value vanishes. On the other hand, if the field is different, \(Q^\phi _n\) just becomes the identity operator. One can notice that the projection operators are only related to Y-field or \({{{\bar{Y}}}}\)-field.

Since the Hamiltonian is commuted with the total spin number operator, one can classify the whole Hilbert space in terms of numbers of excitations: \(\mathcal{H}= \mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \mathcal{H}_{3} \oplus \cdots \oplus \mathcal{H}_{L/2}\). Furthermore, we shall assume that the eigenstates can be written through the sum of plane waves with well-defined lattice momenta and their reflections with a negative sign of momenta. For example, the one-magnon eigenstate becomes

$$\begin{aligned} \mid \psi \rangle =\sum ^{L_{\textrm{eff}}}_{n=1_{\textrm{eff}}} (e^{ipn}+R(p)e^{-ipn})\mid n \rangle , \end{aligned}$$
(A3)

where we used \(1_{\textrm{eff}}\) and \(L_{\textrm{eff}}\), respectively, as the first site and the last site of the spin chain. This is because those can be differently defined for the type of excitations. It is not strange if we remind that the Y-excitation cannot be located at the first site.

Since Z and \({{{\bar{Z}}}}\) can be thought as sort of bound states, there would be in general four different scalar excitations: X, \({{{\bar{X}}}}\), Y, and \({{{\bar{Y}}}}\). However, we shall further exclude Y-excitation and \({{{\bar{Y}}}}\)-excitation from our consideration, because those make interactions between D-brane parts of the determinants and strings nontrivial. For other scalar excitations, see the original paper [37]. For example, if we consider the following situation:

$$\begin{aligned} {{\mathcal {O}}}_{1}= & {} \epsilon _{i_{1}\ldots i_{N}}^{j_{1}\ldots j_{N}} Y_{j_{1}}^{i_{1}}\ldots Y_{j_{N-1}}^{i_{N-1}} \left( Z^{L_{1}-1} Y \right) _{j_{N}}^{i_{N}}, \qquad \nonumber \\ {{\mathcal {O}}}_{2}= & {} \epsilon _{i_{1}\ldots i_{N}}^{j_{1}\ldots j_{N}} {{{{\bar{Y}}}}}_{j_{1}}^{i_{1}}\ldots {{{{\bar{Y}}}}}_{j_{N-1}}^{i_{N-1}} \left( {{{\bar{Z}}}}^{L_{2}-1 }{{{\bar{Y}}}} \right) _{j_{N}}^{i_{N}}, \nonumber \\ {{\mathcal {O}}}_{3}= & {} = {\text {tr}}\left( {\tilde{Z}}^{L_3}\right) = {\text {tr}}\left( \left( Z+{{{\bar{Z}}}}+X-{{{\bar{X}}}}\right) ^{L_{3}}\right) , \end{aligned}$$
(A4)

the excitations Y and \({{{\bar{Y}}}}\) shall be contracted with \({{{\bar{Y}}}}\) and Y in the D-brane part. Thus, in our problem, it would be enough if we know the coordinate Bethe ansatz for X- and \({{{\bar{X}}}}\)-excitations and the corresponding reflection factor.

Let us start with one-magnon problem. Note that there is actually no difference between X- and \({{{\bar{X}}}}\)-excitations, since they are symmetric in Z-vacuum spin-chain of \(Y=0\) brane. Thus, without loss of generality, we consider only X-excitation. For convenience, we further choose \(\lambda =1\). We then have the much simpler Hamiltonian

$$\begin{aligned} {\mathbb {H}}=\sum _{l=1}^{L-1} (I_{l,l+1}-P_{l,l+1}). \end{aligned}$$
(A5)

If we assume the following one-magnon Bethe ansatz:

$$\begin{aligned} \mid \psi \rangle =\sum ^L_{n=1} (e^{ipn}+R(p) e^{-ipn})\mid n \rangle , \end{aligned}$$
(A6)

it is straightforward to check that the Hamiltonian can be diagonalized, such as

$$\begin{aligned} {\mathbb {H}} \mid \psi \rangle= & {} [(e^{ip}+R(p)e^{-ip})-(e^{2ip}+R(p)e^{-2ip})] \mid 1 \rangle \\{} & {} + [2(e^{2ip}+R(p)e^{-2ip})-(e^{ip}+R(p)e^{-ip})\\{} & {} -(e^{3ip}+R(p)e^{-3ip})]\mid 2 \rangle + \cdots \\{} & {} + [(e^{ipL}+R(p)e^{-ipL})-(e^{ip(L-1)}\\{} & {} +R(p)e^{-ip(L-1)})]\mid L \rangle = E\mid \psi \rangle \end{aligned}$$

if we demand the following identifications:

$$\begin{aligned} \begin{aligned}&[(e^{ip}+R(p)e^{-ip})-(e^{2ip}+R(p)e^{-2ip})]\mid 1\rangle \\&\quad =E(e^{ip}+R(p)e^{-ip})\mid 1 \rangle ,\\&\quad [2(e^{2ip}+R(p)e^{-2ip})-(e^{ip}+R(p)e^{-ip})\\&\qquad -(e^{3ip}+R(p)e^{-3ip})]\mid 2 \rangle =E(e^{2ip}+R(p)e^{-2ip})\mid 2 \rangle ,\\&\qquad \vdots \\&\quad [(e^{ipL}+R(p)e^{-ipL})-(e^{ip(L-1)}\\&\qquad +R(p)e^{-ip(L-1)})]\mid L \rangle =E(e^{ipL}+R(p)e^{-ipL})\mid L \rangle . \end{aligned} \end{aligned}$$

One can easily compute the Bethe equation, the reflection matrix and the energy eigenvalue from these equations. Let us summarize the results

$$\begin{aligned} e^{2ipL}=1, \quad R(p)=e^{ip},\quad E=4\sin ^2 \left( \frac{p}{2} \right) . \end{aligned}$$
(A7)

The two-magnon problem can be similarly studied. First, we need to remember there are only two cases: YY and \({{{\bar{Y}}}} {{{\bar{Y}}}}\). This is because \(Y {{{\bar{Y}}}}\) can generate all other SO(6) ingredients, such as \(X{{{\bar{X}}}}\) and \(Z{{{\bar{Z}}}}\). One can start with the wavefunction such as

$$\begin{aligned} |\psi \rangle= & {} \sum _{n_{1} < n_{2} } f(n_1, n_2 ) |n_1,n_2 \rangle ,\quad \nonumber \\ |n_1, n_2 \rangle= & {} |Z \cdots Z {\mathop {X}\limits ^{{\mathop {\downarrow }\limits ^{n_{1}}}}} Z \cdots Z {\mathop {X}\limits ^{{\mathop {\downarrow }\limits ^{n_{2}}}}} Z \cdots Z \rangle . \end{aligned}$$
(A8)

We then need to solve \(H |\psi \rangle = E |\psi \rangle\) with a general ansatz \(f(n_1, n_2)\), such as

$$\begin{aligned} f(x_1,x_2 )= & {} A_{1} e^{i p_1 n_1 + i p_2 n_2 } + A_{2} e^{-i p_1 n_1 + i p_2 n_2 }\nonumber \\{} & {} + \cdots A_{8} e^{-i p_2 n_1 - i p_1 n_2 }. \end{aligned}$$
(A9)

It turned out that the correct wavefunction is

$$\begin{aligned} \begin{aligned} f(x_1,x_2 )&= e^{i p_1 n_1 + i p_2 n_2 } + R(p_{1})e^{-i p_1 n_1 + i p_2 n_2 } \\&\quad +R(p_{2})S(p_2,p_1 ) S(p_1, -p_2 )e^{i p_1 n_1 - i p_2 n_2 } \\&\quad + R(p_{1})R(p_{2}) S(p_2,p_1 ) S(p_1, -p_2 ) \\&\quad e^{-i p_1 n_1 - i p_2 n_2 } + S(p_2,p_1 ) e^{i p_2 n_1 + i p_1 n_2 } \\&\quad +R(p_{1}) S(p_1, -p_2 ) e^{i p_2 n_1 - i p_1 n_2 } \\&\quad + R(p_{2}) S(p_2,p_1 ) e^{-i p_2 n_1 + i p_1 n_2 } \\&\quad + R(p_1 )R(p_2 ) S(p_1, -p_2 )e^{-i p_2 n_1 - i p_1 n_2 }, \end{aligned} \end{aligned}$$
(A10)

where the boundary amplitude R(p) and the bulk scattering amplitude \(S(p_1,p_2 )\) are given as

$$\begin{aligned} R(p) = e^{i p}, \qquad S(p_1,p_2 )= -\frac{1-2e^{i p_{1}}+e^{i p_{1} + i p_{2}}}{1-2e^{i p_{2}}+e^{i p_{1} + i p_{2}}}. \end{aligned}$$
(A11)

With the above wavefunction, we can really check that we solve the eigenvalue equation. The eigenvalue E is obtained as

$$\begin{aligned} E= & {} 4 - e^{i p_{1}}- e^{-i p_{1}}- e^{i p_{2}}- e^{-i p_{2}} \nonumber \\= & {} 4\sin ^2 \left( \frac{p_{1}}{2} \right) + 4\sin ^2 \left( \frac{p_{2}}{2} \right) . \end{aligned}$$
(A12)

Moreover, for consistency, the following BAEs should be satisfied:

$$\begin{aligned} e^{2 i p_{1} L}= & {} S(p_{1},p_{2}) R(p_1) S(p_{1},-p_{2}) R(-p_1 ) \end{aligned}$$
(A13)
$$\begin{aligned} e^{2 i p_{2} L}= & {} S(p_{2},p_{1}) R(p_2) S(p_{2},-p_{1}) R(-p_2 ). \end{aligned}$$
(A14)

All results for two-magnon are consistent with one-particle reduction. Although we shall not explicitly write down, the multi-magnon generalization can be straightforwardly performed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KY., Kim, M. & Lee, KS. Structure constants of a single trace operator and determinant operators from hexagon. J. Korean Phys. Soc. 84, 180–188 (2024). https://doi.org/10.1007/s40042-023-00958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00958-9

Keywords

Navigation