Skip to main content
Log in

Photosensitivity of bulk and monolayer MoS2-based two-terminal devices

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDCs), such as MoS2, MoSe2, WS2, and WSe2, have attracted enormous attention owing to their unique electrical and optical properties. A type of material known as TMDC has the MX2 formula with a direct bandgap in ultra-thin layers and indirect bandgap properties in the bulk. TMDCs have attracted significant research interest due to their use in nano-devices, opto-electronics, and next-generation electronics. In the study, two different MoS2 devices, Au–bulk MoS2–Au and Au–monolayer MoS2–Au, were fabricated, and their photon-induced current–voltage characteristics at different wavelengths (red ≈ 650 nm, green ≈ 532 nm and blue ≈ 450 nm) and values were compared. Additionally, the time-dependent photoresponses of these devices under red light irradiation (wavelength, \({\lambda }_{ex}\) = 650 nm) were analyzed. The Au–monolayer MoS2–Au device had a higher current response compared with the Au–bulk MoS2–Au device. These results suggest that single-layer MoS2 devices could be more efficient and responsive than bulk MoS2 devices for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Jana, A. Meena, S.A. Patil, Y. Jo, S. Cho, Y. Park, V.G. Sree, H. Kim, H. Im, R.A. Taylor, Prog. Mater. Sci. 129, 100975 (2022). https://doi.org/10.1016/j.pmatsci.2022.100975

    Article  Google Scholar 

  2. A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo, V.G. Sree, Y. Park, H. Kim, H. Im, R.A. Taylor, Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009

    Article  Google Scholar 

  3. S. Cho, S. Kim, J. Kim, Y. Jo, I. Ryu, S. Hong, J.-J. Lee, S. Cha, E.B. Nam, S.U. Lee, S. Noh, H. Kim, J. Kwak, H. Im, Light Sci. Appl. 9, 156 (2020). https://doi.org/10.1038/s41377-020-00391-8

    Article  ADS  Google Scholar 

  4. A.V. Fulari, N.T. Duong, D.A. Nguyen, Y. Jo, S. Cho, D.Y. Kim, N.K. Shrestha, H. Kim, H. Im, Chem. Eng. J. 433, 133809 (2022). https://doi.org/10.1016/j.jcis.2022.10.012

    Article  Google Scholar 

  5. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  ADS  Google Scholar 

  6. S. Mokkapati, C. Jagadish, Mater. Today 12, 22–32 (2009). https://doi.org/10.1016/S1369-7021(09)70110-5

    Article  Google Scholar 

  7. X. Yao, Y. Wang, X. Lang, Y. Zhu, Q. Jiang, Phys. E: Low-Dimens. Syst. Nanostructures 109, 11–16 (2019). https://doi.org/10.1016/j.physe.2018.12.037

    Article  ADS  Google Scholar 

  8. A. Ciarrocchi, A. Avsar, D. Ovchinnikov, A. Kis, Nat. Commun. 9, 919 (2018). https://doi.org/10.1038/s41467-018-03436-0

    Article  ADS  Google Scholar 

  9. S. Cho, Y. Jo, H. Woo, J. Kim, J. Kwak, H. Kim, H. Im, Appl. Sci. Converg. Technol. 26, 47–49 (2017). https://doi.org/10.5757/ASCT.2017.26.3.47

    Article  Google Scholar 

  10. D.A. Nguyen, Y. Jo, T.U. Tran, M.S. Jeong, H. Kim, H. Im, Small Methods 5, 2101303 (2021). https://doi.org/10.1002/smtd.202101303

    Article  Google Scholar 

  11. D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov, P. Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F. Guinea, A.K. Geim, Nature Phys. 7, 701–704 (2011). https://doi.org/10.1038/nphys2049

    Article  ADS  Google Scholar 

  12. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Nano Lett. 11, 2396–2399 (2011). https://doi.org/10.1021/nl200758b

    Article  ADS  Google Scholar 

  13. D.A. Nguyen, D.Y. Park, N.T. Duong, K.N. Lee, H. Im, H. Yang, M.S. Jeong, Small Methods 5, 2100558 (2021). https://doi.org/10.1002/smtd.202100558

    Article  Google Scholar 

  14. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805

    Article  ADS  Google Scholar 

  15. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Nat Mater. 9, 315–319 (2010). https://doi.org/10.1038/nmat2710

    Article  ADS  Google Scholar 

  16. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820–823 (2009). https://doi.org/10.1038/nature08105

    Article  ADS  Google Scholar 

  17. J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193–335 (1969). https://doi.org/10.1080/00018736900101307

    Article  ADS  Google Scholar 

  18. S.H. Mir, V.K. Yadav, J.K. Singh, ACS Omega 5, 14203–14211 (2020). https://doi.org/10.1021/acsomega.0c01676

    Article  Google Scholar 

  19. X. Li, H. Zhu, J. Materiomics. 1, 33–34 (2015). https://doi.org/10.1016/j.jmat.2015.03.003

    Article  ADS  Google Scholar 

  20. J.R. Brent, N. Savjani, P. O’Brien, Prog. Mater. Sci. 89, 411–478 (2017). https://doi.org/10.1016/j.pmatsci.2017.06.002

    Article  Google Scholar 

  21. S. Ahmed, J. Yi, Nanomicro Lett. 9, 50 (2017). https://doi.org/10.1007/s40820-017-0152-6

    Article  ADS  Google Scholar 

  22. X.-G. Zhao, Z. Shi, X. Wang, H. Zou, Y. Fu, L. Zhang, InfoMat 3, 201–211 (2021). https://doi.org/10.1002/inf2.12155

    Article  Google Scholar 

  23. R.Y. Kezerashvili, A. Spiridonova, Phys. Rev. Research 3, 033078 (2021). https://doi.org/10.1103/PhysRevResearch.3.033078

    Article  ADS  Google Scholar 

  24. Y. Park, S.H. Choi, G. Lee, W. Yang, H. Im, Opt. Mater. 84, 870–873 (2018). https://doi.org/10.1016/j.optmat.2018.08.019

    Article  ADS  Google Scholar 

  25. Y. Park, N. Li, C.C.S. Chan, B.P.L. Reid, R.A. Taylor, H. Im, Curr. Appl. Phys. 17, 1153–1157 (2017). https://doi.org/10.1016/j.cap.2017.05.009

    Article  ADS  Google Scholar 

  26. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111–5116 (2011). https://doi.org/10.1021/nl201874w

    Article  ADS  Google Scholar 

  27. S. Park, J. Lim, J. Hong, S. Cha, Catalysts 11, 70 (2021). https://doi.org/10.3390/catal11010070

    Article  Google Scholar 

  28. S. Pak, S. Kim, J. Lim, T. Kim, K. Park, S. Cha, J. Phys. Chem. C 127, 4689–4695 (2023). https://doi.org/10.1021/acs.jpcc.2c07542

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Dongguk University Research Fund of 2020, and by the National Research Foundation (NRF) of Korea (grant no. 2021R1F1A1062672)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungsang Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Park, W., Im, H. et al. Photosensitivity of bulk and monolayer MoS2-based two-terminal devices. J. Korean Phys. Soc. 83, 344–349 (2023). https://doi.org/10.1007/s40042-023-00884-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00884-w

Keywords

Navigation