Skip to main content
Log in

Maxwell–Wagner-type relaxation behavior through impedance spectral analysis of YMnO3 single crystal

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Single crystalline YMnO\(_3\) has been investigated through the temperature- dependent dielectric and conductivity analysis in between the temperature region 100 and 320 K with frequency range from 20 to 100 kHz. A distinct peak has been observed in temperature-dependent dielectric loss (\(tan\delta\)) which has been shifted to higher temperature with frequency. The activation energy has been calculated as 0.44eV from peak shifting of \(tan\delta\). To explore the bulk and electrode contribution of the sample, impedance spectral analysis of the obtained dielectric data has been performed which suggests the presence of a Maxwell–Wagner-type interfacial effect in addition with intrinsic effect. It was found that the activation energy 0.44–0.46 eV obtained from the Arrhenius fit is similar to the value from the obtained parameter from the Nyquist plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Original data would be available from the corresponding author on reasonable request.

References

  1. T. Choi, Y. Horibe, H.T. Yi, Y.J. Choi, W. Wu, S.-W. Cheong, Nat. Mater. 9, 253 (2010)

    Article  ADS  Google Scholar 

  2. S. Remsen, B. Dabrowski, Chem. Mater. 23, 3818 (2011)

    Article  Google Scholar 

  3. A. Turut, M. Coşkun, F.M. Coşkun, O. Polat, Z. Durmuş, M. Çağlar, H. Efeoğlu, J. Alloys Compd. 782, 566–575 (2018)

    Article  Google Scholar 

  4. M. Kumar, D.M. Phase, R.J. Choudhary, Heliyon 5, e01691 (2019)

    Article  Google Scholar 

  5. M. Sánchez-Pérez, O. J. Dura, J. P. Andrés, R. López Antón, J. A. González, M. A. López De La Torre, J. Appl. Phys. 126, 224103 (2019)

  6. O. Nirmala, P. Sreedhara Reddy, V. Diwakar Reddy, Materialstoday: Proceedings, 23, 490-494 (2020)

  7. U. Adem, N. Mufti, A.A. Nugroho, G. Catalan, B. Noheda, T.T.M. Palstra, J. Alloys Compd. 638, 228–232 (2015)

    Article  Google Scholar 

  8. E. Ruff, S. Krohns, M. Lilienblum, D. Meier, M. Fiebig, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 118, 036803 (2017)

    Article  ADS  Google Scholar 

  9. M. Muneeswaran, J.W. Jang, B.C. Choi, J.H. Jeong, N.V. Giridharan, J. Mater. Sci. Mater. Electron. 28, 16788–16796 (2017)

    Article  Google Scholar 

  10. L.X. Xiao, Z.C. Xia, X. Wang, Y. Ni, W. Yu, L.R. Shi, Z. Jin, G.L. Xiao

  11. K. Gadani, K.N. Rathod, V.G. Shrimali, B. Rajyaguru, B. Udeshi, V.S. Vadgama, D. Dhruv, A.D. Joshi, D.D. Pandya, K. Asokan, P.S. Solanki, N.A. Shah, Solid State Commun. 318, 113975 (2020)

    Article  Google Scholar 

  12. F. Wan, L. Li, X. Bai, Y. Wang, L. Gao, J. Li, C. Cao, J. Mater. Sci. Mater. Electron. 33, 17361–17371 (2022)

    Article  Google Scholar 

  13. M. Tomczyk, P.M. Vilarinho, A. Moreira, A. Almeida, J. Appl. Phys. 110, 064116 (2011)

    Article  ADS  Google Scholar 

  14. P. Ren, H. Fan, X. Wang, Appl. Phys. Lett. 103, 152905 (2013)

    Article  ADS  Google Scholar 

  15. C.C. Wang, H.B. Lu, K.J. Jin, G.Z. Yang, Mod. Phys. Lett. B. 22, 1297–1305 (2008)

    Article  ADS  Google Scholar 

  16. J. Yang, J. He, J.Y. Zhu, W. Bai, L. Sun, X.J. Meng, X.D. Tang, C.-G. Duan, D. Remiens, J.H. Qiu, J.H. Chu, Appl. Phys. Lett. 101, 222904 (2012)

    Article  ADS  Google Scholar 

  17. K. Bhoi, T. Dam, S.R. Mohapatra, M.M. Patidar, D. Singh, A.K. Singh, P.N. Vishwakarma, P.D. Babu, V. Siruguri, D.K. Pradhan, J. Mag. Magn. Mater 480, 138–149 (2019)

    Article  ADS  Google Scholar 

  18. M. Kawarasaki, K. Tanabe, I. Terasaki, Y. Fujii, H. Taniguchi, Sci. Rep. 7, 1–6 (2017)

    Article  Google Scholar 

  19. M. Patra, A. Midya, P. Mandal, Solid State Comm. 353, 114845 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AM and MP conceived and designed the analysis; experimental data have been collected by AM. All authors analyzed the results and contributed to prepare the manuscript.

Corresponding author

Correspondence to Moumita Patra.

Ethics declarations

Conflict of interest

There are no conflicts of interest associated with the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midya, A., Mandal, B. & Patra, M. Maxwell–Wagner-type relaxation behavior through impedance spectral analysis of YMnO3 single crystal. J. Korean Phys. Soc. 83, 381–385 (2023). https://doi.org/10.1007/s40042-023-00865-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00865-z

Keywords

Navigation