Skip to main content
Log in

Utility of split-VMAT for cardiac protection during left breast cancer radiotherapy

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The field-in-field technique of three-dimensional conformal radiotherapy (3D-CRT) is a common treatment technique used in breast radiation therapy. However, when the heart is largely included in the treatment field for the treatment of left breast cancer, it is unavoidable that a large dose will impact the heart. Increases in the mean dose and the maximum dose to the heart increase the hazard ratio for ischemic heart disease. Split-VMAT is a technique that combines tangential field and volumetric modulated arc therapy (VMAT) methods using multiple small partial arcs. Split-VMAT can reduce the maximum dose to the heart and while ensuring target coverage. In this study, we sought to confirm the utility of split-VMAT for patients with left breast cancer whose heart is more than 1 cm inside the treatment field. The split-VMAT plan consisted of 4 fields, set at 20–60° per field, and the treatment time was limited to less than 20 s to enable deep-inspiration breath hold (DIBH). A half-VMAT, consisting of an arc of 180° and a field-in-field approach, using 2 tangential fields symmetrical to each other, were used as comparison groups. In addition, the field-in-field technique was divided into 2 types, 1 that emphasized target coverage and the other that focused on heart protection. For treatment, an Elekta Versa HD linear accelerator was used, and treatment planning was performed using Elekta Monaco software. Both split-VMAT and field-in-field, focused on target coverage achieved better (> 3%) target coverage. However, in field-in-field, focused on target coverage, the maximum dose to the heart was very high. Compared to the both field-in-field-based technique, the average dose to the lungs was about twice as high in the both VMAT-based technique. In addition, the treatment time per field was increased by about 5 s, and the total treatment time was more than doubled. The 3D-CRT field-in-field technique can significantly protect organs at risk (OARs) not included in the radiation field because the gantry is not directed to inside the body. However, if the heart is, the OAR, it may be exposed to high radiation doses. The split-VMAT limits the angle of the arc, constraining the beam directed inside the patient's body, and shortens the treatment time to allow DIBH. In addition, since sufficient target coverage and heart protection are possible, split-VMAT can be a compromise between 3D-CRT, intensity-modulation radiotherapy, and conventional VMAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. G. Han, 2019 National Cancer Statistics in Korea (2021)

  2. EBCTCG, Lancet 378, 1707 (2011)

  3. J.A. Bradley, N.P. Mendenhall, Annu. Rev. Med. 69, 277 (2018)

    Article  Google Scholar 

  4. K.L. Baglan, M.B. Sharpe, D. Jaffray, R.C. Frazier, J. Fayad, L.L. Kestin, V. Remouchamps, A.A. Martinez, J. Wong, F.A. Vicini, Int. J. Radiat. Oncol. Biol. Phys. 55, 302 (2003)

    Article  Google Scholar 

  5. H. Zhao, M. He, G. Cheng, D. Han, N. Wu, D. Shi, Z. Zhao, J. Jin, Radiat. Oncol. 10, 1 (2015)

    Article  Google Scholar 

  6. B.R.J.H. Bird, S.M. Swain, Clin. Cancer Res. 14, 14 (2008)

    Article  Google Scholar 

  7. S.C. Darby, M. Ewertz, P. McGale, A.M. Bennet, U. Blom-Goldman, D. Bronnum, C. Correa, D. Cutter, G. Gagliardi, B. Gigante, M.B. Jensen, A. Nisbet, R. Peto, K. Rahimi, C. Taylor, P. Hall, N. Engl. J. Med. 368, 987 (2013)

  8. G. Cai, C. Li, J. Yu, X. Meng, Front. Oncol. 10, 1 (2020)

    Article  Google Scholar 

  9. L. Livi, F.B. Buonamici, G. Simontacchi, V. Scotti, M. Fambrini, A. Compagnucci, F. Paiar, S. Scoccianti, S. Pallotta, B. Detti, B. Agresti, Int. J. Radiat. Oncol. Biol. Phys. 77, 509 (2010)

    Article  Google Scholar 

  10. J.J. Qiu, Z. Chang, Q.J. Wu, S. Yoo, J. Horton, F.F. Yin, Int. J. Radiat. Oncol. Biol. Phys. 78, 288 (2010)

    Article  Google Scholar 

  11. M. Jeulink, M. Dahele, P. Meijnen, B.J. Slotman, W.F. Verbakel, J. Appl. Clin. Med. Phys. 16, 197 (2015)

    Article  Google Scholar 

  12. T. Virén, J. Heikkilä, K. Myllyoja, K. Koskela, T. Lahtinen, J. Seppälä, Radiat. Oncol. 10, 1 (2015)

    Article  Google Scholar 

  13. T.T. Pham, R. Ward, D. Latty, C. Owen, V. Gebski, J. Chojnowski, C. Kelly, V. Ahern, K. Tiver, K. Stuart, W. Wang, J. Med. Imaging Radiat. Oncol. 60, 545 (2016)

    Article  Google Scholar 

  14. M. Sakka, L. Kunzelmann, M. Metzger, G.G. Grabenbauer, Strahlenther. Onkol. 193, 800 (2017)

    Article  Google Scholar 

  15. G.H. Jin, L.X. Chen, X.W. Deng, X.W. Liu, Y. Huang, X.B. Huang, Radiat. Oncol. 8, 1 (2013)

    Article  Google Scholar 

  16. H. Liu, X. Chen, Z. He, J. Li, Comput. Med. Imaging Graph. 54, 1 (2016)

    Article  Google Scholar 

  17. J.H. Huang, X.X. Wu, X. Lin, J.T. Shi, Y.J. Ma, S. Duan, X.B. Huang, Radiat. Oncol. 20, 31 (2019)

    Article  Google Scholar 

  18. S. Poeta, Y. Jourani, A. De Caluwé, R. Van den Begin, D. Van Gestel, N. Reynaert, Radiat. Oncol. 16, 1 (2021)

    Article  Google Scholar 

  19. A.J. Hayden, M. Rains, K. Tiver, J. Med. imaging Radiat. Oncol. 56, 464 (2012)

    Article  Google Scholar 

  20. S.T. Swamy, C.A. Radha, M. Kathirvel, G. Arun, S. Subramanian, Asian Pac. J. Cancer Prev. 15, 9033 (2014)

    Article  Google Scholar 

  21. L.M. Smyth, K.A. Knight, Y.K. Aarons, J. Wasiak, J. Med. Radiat. Sci. 62, 66 (2015)

    Article  Google Scholar 

  22. C.A. Jensen, A.M. Roa, M. Johansen, J.Å Lund, J. Frengen, Phys. Med. 1, 12 (2018)

    Article  Google Scholar 

  23. C. Simonetto, M. Eidemüller, A. Gaasch, M. Pazos, S. Schönecker, D. Reitz, S. Kääb, M. Braun, N. Harbeck, M. Niyazi, C. Belka, Radiother. Oncol. 131, 202 (2019)

    Article  Google Scholar 

  24. S. Russo, M. Esposito, V. Hernandez, J. Saez, F. Rossi, L. Paoletti, S. Pini, P. Bastiani, G. Reggiori, G. Nicolini, E. Vanetti, Phys. Med. 1, 79 (2019)

    Article  Google Scholar 

  25. A.M. Berseon, R. Emery, L. Rodriguez, G.M. Richards, T. Ng, S. Sanghavi, J. Barsa, Int. J. Radiat. Oncol. Biol. Phys. 60, 419 (2004)

    Article  Google Scholar 

  26. V. Bruzzaniti, A. Abate, P. Pinnarò, M. D’Andrea, E. Infusino, V. Landoni, A. Soriani, C. Giordano, A.M. Ferraro, L. Strigari, J. Exp. Clin. Cancer Res. 32, 1 (2013)

    Article  Google Scholar 

  27. K.H. Sung, K.C. Lee, S.H. Lee, S.H. Ahn, S.H. Lee, J. Choi, Radiat. Oncol. J. 32, 84 (2014)

    Article  Google Scholar 

  28. S. Schönecker, F. Walter, P. Freislederer, C. Marisch, H. Scheithauer, N. Harbeck, S. Corradini, C. Belka, Radiat. Oncol. 11, 1 (2016)

    Article  Google Scholar 

  29. A.N. Pedersen, S. Korreman, H. Nyström, L. Specht, Radiother. Oncol. 72, 53 (2004)

    Article  Google Scholar 

  30. M. Kügele, A. Mannerberg, S.N. Bekke, S. Alkner, L. Berg, F. Mahmood, C. Thornberg, A. Edvardsson, S.Å. Bäck, C.F. Behrens, S. Ceberg, J. Appl. Clin. Med. Phys. 20, 61 (2019)

    Article  Google Scholar 

  31. S.H. Hattel, P.A. Andersen, I.H. Wahlstedt, S. Damkjær, A. Saini, J.B. Thomsen, J. Appl. Clin. Med. Phys. 20, 39 (2019)

    Article  Google Scholar 

  32. M. Laaksomaa, S. Sarudis, M. Rossi, T. Lehtonen, J. Pehkonen, J. Remes, H. Luukkanen, T. Skyttä, M. Kapanen, J. Appl. Clin. Med. phys. 20, 97 (2019)

    Article  Google Scholar 

  33. B.D. Macrie, E.D. Donnelly, J.P. Hayes, M. Gopalakrishnan, R.T. Philip, J. Reczek, A. Prescott, J.B. Strauss, Phys. Med. 31, 733 (2015)

    Article  Google Scholar 

  34. C.W. Taylor, P. McGale, J.M. Povall, E. Thomas, S. Kumar, D. Dodwell, S.C. Darby, Int. J. Radiat. Oncol. Biol. Phys. 73, 1061 (2009)

    Article  Google Scholar 

  35. M. Clements, N. Schupp, M. Tattersall, A. Brown, R. Larson, Med. Dosim. 43, 106 (2018)

    Article  Google Scholar 

  36. Y. Zhao, G. Qi, G. Yin, X. Wang, P. Wang, J. Li, M. Xiao, J. Li, S. Kang, X. Liao, Radiat. Oncol. 9, 1 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkan Ki.

Ethics declarations

Ethics approval

All clinical information was investigated after obtaining the approval with exemption of the institutional review board of Pusan National University Yangsan Hospital (IRB approval numbers: 05–2023-018).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.W., Jeon, H., Ki, Y. et al. Utility of split-VMAT for cardiac protection during left breast cancer radiotherapy. J. Korean Phys. Soc. 83, 396–402 (2023). https://doi.org/10.1007/s40042-023-00853-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00853-3

Keywords

Navigation