Skip to main content
Log in

Resistive random access memory based on graphene oxide with UV-O3 treatment

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We fabricated Graphene Oxide (GO) sandwiched by Multi-layer Graphene (MLG) for operating as an RRAM device. By investigating the UV-O3 treatment time dependency of the MLG/GO/MLG device, we confirmed the critical UV-O3 treatment time under sufficiently oxidized conditions for stable Resistive Random Access Memory (RRAM) operation during a repeating DC voltage sweep. The bipolar resistive switching mechanism of the MLG/GO/MLG structure was verified through the algebraic algorithmic relation between the current and voltage. This result provides important clues for developing fully 2D material-based electric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Nanoscale Res. Lett. 9, 526 (2014)

    Article  ADS  Google Scholar 

  2. R. Bez, A. Pirovano, Mater. Sci. Semicond. Process 7, 349 (2004)

    Article  Google Scholar 

  3. F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Nanoscale Res. Lett. 15, 90 (2020)

    Article  ADS  Google Scholar 

  4. X.L. Hong et al., J. Mater. Sci. 53, 8720 (2018)

    Article  ADS  Google Scholar 

  5. L. Zhang et al., Nanoscale 11, 12413 (2019)

    Article  Google Scholar 

  6. S. Bertolazzi et al., Adv. Mater. 31, 1806663 (2019)

    Article  Google Scholar 

  7. Q. Shi, J. Wang, I. Aziz, P.S. Lee, Adv. Intell. Syst. 2, 2000007 (2020)

    Article  Google Scholar 

  8. D.C. Kim et al., Adv. Mater. 32, 1902743 (2019)

    Article  Google Scholar 

  9. R. Xu et al., Nano Lett. 19, 2411 (2019)

    Article  ADS  Google Scholar 

  10. Y. Xia et al., Adv. Electron. Mater. 8, 2200126 (2022)

    Article  Google Scholar 

  11. S. Kim et al., Adv. Intell. Syst. 4, 2100273 (2022)

    Article  Google Scholar 

  12. X. Zhang et al., ACS Appl. Mater. Interfaces 14, 44614 (2022)

    Article  Google Scholar 

  13. T. Das, B.K. Sharma, A.K. Katiyar, J.-H. Ahn, J. Semicond. 39, 011007 (2018)

    Article  ADS  Google Scholar 

  14. O.H. Gwon, J.Y. Kim, S.-J. Kang, Y.-J. Yu, Appl. Sci. Converg. Technol. 29, 180 (2020)

    Article  Google Scholar 

  15. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353, aac9439 (2016)

    Article  Google Scholar 

  16. K.S. Kim et al., Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  17. O.H. Gwon et al., Appl. Sci. Converg. Technol. 30, 183 (2021)

    Article  Google Scholar 

  18. Z. Zheng et al., Nanotechnology 27, 225501 (2016)

    Article  ADS  Google Scholar 

  19. O.H. Gwon et al., Appl. Sci. Converg. Technol. 31, 110 (2021)

    Article  Google Scholar 

  20. O.H. Gwon et al., Adv. Funct. Mater. 31, 2105472 (2021)

    Article  Google Scholar 

  21. G. Ahn, H.R. Kim, B.H. Hong, S.M. Ryu, Carbon Lett. 13, 34 (2012)

    Article  Google Scholar 

  22. Y. Mulyana, M. Uenuma, Y. Ishikawa, Y. Uraoka, J. Phys. Chem. C. 118, 27372 (2014)

    Article  Google Scholar 

  23. T. Tu et al., Nano Lett. 20, 7469 (2020)

    Article  ADS  Google Scholar 

  24. S. Huh et al., ACS Nano 5, 9799 (2011)

    Article  Google Scholar 

  25. M.J. Josline, E.T. Kim, J.H. Lee, Appl. Sci. Converg. Technol. 31, 63 (2022)

    Article  Google Scholar 

  26. N.H. Zainal et al., ACS Omega 6, 23710 (2021)

    Article  Google Scholar 

  27. F.C. Chiu, Adv. Mater. Sci. Eng. 2014, 18 (2014)

    Google Scholar 

  28. J.Y. Kim et al., Appl. Sci. Converg. Technol. 30, 78 (2021)

    Article  Google Scholar 

  29. F. Zheng et al., RSC Adv. 5, 89515 (2015)

    Article  ADS  Google Scholar 

  30. D. Konios et al., J. Mater. Chem. A 4, 1612 (2016)

    Article  Google Scholar 

  31. H.Y. Jeong, J.Y. Lee, M.-K. Ryu, S.-Y. Choi, Phys. Status Solidi Rapid Res. Lett. 4, 28 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the BK21 FOUR Program by Chungnam National University Research Grant, 2022, and a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A6A1A03047771)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jun Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, B., Kim, J.Y., Gwon, O.H. et al. Resistive random access memory based on graphene oxide with UV-O3 treatment. J. Korean Phys. Soc. 83, 38–42 (2023). https://doi.org/10.1007/s40042-023-00832-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00832-8

Keywords

Navigation