Skip to main content
Log in

Quantum simulations with ultracold atoms in optical lattices: past, present and future

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ultracold atoms in optical lattices have been celebrated as the representative of the quantum simulator, which is a subcategory of a quantum computer that can solve many-body quantum problems. The system is made of ultracold quantum gases and defect-free light crystals, mimicking the behavior of electrons in a solid-state material. It provides unprecedented tunability of experimental parameters, such as the interaction between particles, dimensions, and disorder, and offers direct accessibility of the many-body quantum state through the measurement of correlation functions. It is an ideal experimental platform to realize exotic Hamiltonian like the Haldane model and to study non-equilibrium dynamics because of its high degrees of isolation from environmental noise. In this article, I review a short history of how the field comes up with the idea of a quantum simulator, the state-of-the-art quantum techniques, and future outlooks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Greiner et al., Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  2. D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  3. C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  4. M. Anderson et al., Science 269, 5221 (1995)

    Google Scholar 

  5. K.B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  6. I. Bloch, Nat. Phys. 1, 23 (2005)

    Article  Google Scholar 

  7. A.J. Leggett, Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  8. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  9. M. Greiner et al., Phys. Rev. Lett. 87, 160405 (2001)

    Article  ADS  Google Scholar 

  10. S. Fölling et al., Nature 448, 1029 (2007)

    Article  ADS  Google Scholar 

  11. M.B. Dahan et al., Phys. Rev. Lett. 76, 4508 (1996)

    Article  ADS  Google Scholar 

  12. M. Greiner et al., Nature 419, 51 (2002)

    Article  ADS  Google Scholar 

  13. W. Ketterle and M. W. Zwierlein Proceedings of the International School of Physics “Enrico Fermi”, Course CLXIV, Varenna (2006).

  14. R. Jördens et al., Nature 455, 204 (2008)

    Article  ADS  Google Scholar 

  15. U. Schneider et al., Science 322, 1520 (2008)

    Article  ADS  Google Scholar 

  16. D. Greif et al., Science 351, 953 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Jotzu et al., Nature 515, 237 (2014)

    Article  ADS  Google Scholar 

  18. Scientific background: topological phase transitions and topological phases of matter, by Royal Swedish Academy of Sciences (2016). https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2016.pdf

  19. M. Aidelsburger et al., Phys. Rev. Lett. 107, 255301 (2011)

    Article  ADS  Google Scholar 

  20. M. Aidelsburger et al., Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  21. H. Miyake et al., Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  22. M. Aidelsburger et al., Nat. Phys. 11, 162 (2015)

    Article  Google Scholar 

  23. L. Duca et al., Science 347, 288 (2014)

    Article  ADS  Google Scholar 

  24. T. Li et al., Science 352, 1094 (2014)

    Article  ADS  Google Scholar 

  25. W.S. Bakr et al., Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  26. J.F. Sherson et al., Nature 467, 68 (2010)

    Article  ADS  Google Scholar 

  27. W.S. Bakr et al., Science 329, 547 (2010)

    Article  ADS  Google Scholar 

  28. D.J. Wineland, J. Dalibard, C. Cohen-Tannoudji, Opt. Soc. Am. B 9, 32 (1992)

    Article  ADS  Google Scholar 

  29. M. Endres et al., Science 334, 6053 (2011)

    Article  Google Scholar 

  30. J. Simon et al., Nature 472, 307 (2011)

    Article  ADS  Google Scholar 

  31. W.S. Bakr et al., Nature 480, 500 (2011)

    Article  ADS  Google Scholar 

  32. M. Cheneau et al., Nature 481, 484 (2012)

    Article  ADS  Google Scholar 

  33. M. Endres et al., Nature 487, 454 (2012)

    Article  ADS  Google Scholar 

  34. C. Weitenberg et al., Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  35. P.M. Preiss et al., Science 347, 1229 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Fukuhara et al., Nat. Phys. 9, 235 (2013)

    Article  Google Scholar 

  37. T. Fukuhara et al., Nature 502, 76 (2013)

    Article  ADS  Google Scholar 

  38. T. Fukuhara et al., Phys. Rev. Lett. 115, 035302 (2015)

    Article  ADS  Google Scholar 

  39. M. Schreiber et al., Science 349, 842 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. J.-Y. Choi et al., Science 351, 1547 (2016)

    Article  ADS  Google Scholar 

  41. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  42. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

    Article  ADS  Google Scholar 

  43. V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  44. I.L. Aleiner, B.L. Altshuler, G.V. Shlyapnikov, Nat. Phys. 6, 900 (2010)

    Article  Google Scholar 

  45. R. Nandkishore, D.A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

    Article  ADS  Google Scholar 

  46. E. Altman, R. Vosk, Annu. Rev. Condens. Matter Phys. 6, 383 (2015)

    Article  ADS  Google Scholar 

  47. M. Serbyn, Z. Papić, D.A. Abanin, Phys. Rev. Lett. 111, 127201 (2013)

    Article  ADS  Google Scholar 

  48. D.A. Huse, R. Nandkishore, V. Oganesyan, Phys. Rev. B 90, 174202 (2014)

    Article  ADS  Google Scholar 

  49. J.Z. Imbrie, Phys. Rev. Lett. 117, 027201 (2016)

    Article  ADS  Google Scholar 

  50. W. De Roeck, F. Huveneers, Phys. Rev. B 95, 155129 (2017)

    Article  ADS  Google Scholar 

  51. T.B. Wahl, A. Pal, S.H. Simon, Nat. Phys. 15, 164 (2019)

    Article  Google Scholar 

  52. M.F. Parsons et al., Phys. Rev. Lett. 114, 213002 (2015)

    Article  ADS  Google Scholar 

  53. A. Omran et al., Phys. Rev. Lett. 115, 263001 (2015)

    Article  ADS  Google Scholar 

  54. L.W. Cheuk et al., Phys. Rev. Lett. 114, 193001 (2015)

    Article  ADS  Google Scholar 

  55. E. Haller et al., Nat. Phys. 11, 738 (2015)

    Article  Google Scholar 

  56. G.J.A. Edge et al., Phys. Rev. A 92, 063406 (2015)

    Article  ADS  Google Scholar 

  57. R.A. Hart et al., Nature 519, 211 (2015)

    Article  ADS  Google Scholar 

  58. M.F. Parsons et al., Science 353, 1253 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Boll et al., Science 353, 1257 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  60. L.W. Cheuk et al., Science 353, 1260 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  61. P. Brown et al., Science 357, 1385 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  62. T.-L. Ho and Q. Zhou, arXiv:0911.5506. (2009)

  63. A. Mazurenko et al., Nature 545, 462 (2017)

    Article  ADS  Google Scholar 

  64. C.S. Chiu et al., Phys. Rev. Lett. 120, 243201 (2018)

    Article  ADS  Google Scholar 

  65. D.J. Thouless, Phys. Rev. B 27, 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  66. M. Lohse et al., Nat. Phys. 12, 350 (2016)

    Article  Google Scholar 

  67. S. Nakajima et al., Nat. Phys. 12, 296 (2016)

    Article  Google Scholar 

  68. J. Koepsell et al., Phys. Rev. Lett. 125, 010403 (2020)

    Article  ADS  Google Scholar 

  69. T. Hartke et al., Phys. Rev. Lett. 125, 113x601 (2020).

  70. J.T. Stewart et al., Nature 454, 744 (2008)

    Article  ADS  Google Scholar 

  71. P. Brown et al., Nat. Phys. 16, 26 (2020)

    Article  Google Scholar 

  72. J. Koepsell et al., Nature 572, 358 (2019)

    Article  ADS  Google Scholar 

  73. G. Ji et al., Phys. Rev. X 11, 021022 (2019)

    Google Scholar 

  74. J. Koepsell et al., Science 374, 82 (2021)

    Article  ADS  Google Scholar 

  75. P. Brown et al., Science 363, 379 (2019)

    Article  ADS  Google Scholar 

  76. M.A. Nichols et al., Science 363, 383 (2019)

    Article  ADS  Google Scholar 

  77. J. Vijayan et al., Science 367, 186 (2020)

    Article  ADS  Google Scholar 

  78. E. Guardado-Sanchez et al., Phys. Rev. X 10, 011042 (2020)

    Google Scholar 

  79. G.-B. Jo et al., Phys. Rev. Lett. 108, 042305 (2012)

    Article  Google Scholar 

  80. S. Taie et al., Sci. Adv. 1, e1500854 (2015)

    Article  ADS  Google Scholar 

  81. M. Lu et al., Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  82. K. Aikawa et al., Phys. Rev. Lett. 108, 210401 (2012)

    Article  ADS  Google Scholar 

  83. H. Kim et al., Nat. Comm. 7, 13317 (2016)

    Article  ADS  Google Scholar 

  84. D. Barredo et al., Science 354, 1021 (2016)

    Article  ADS  Google Scholar 

  85. M. Endres et al., Science 354, 1024 (2016)

    Article  ADS  Google Scholar 

  86. M.S. Benjamin et al., Phys. Rev. Lett. 128, 223202 (2022)

    Article  Google Scholar 

  87. Z.Z. Yan et al., Phys. Rev. Lett. 129, 123201 (2022)

    Article  ADS  Google Scholar 

  88. A.W. Young et al., Science 377, 885 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  89. A.J. Daley et al., Nature 607, 667 (2022)

    Article  ADS  Google Scholar 

  90. E. Bairey et al., Phys. Rev. Lett. 122, 020504 (2019)

    Article  ADS  Google Scholar 

  91. Z. Li et al., Phys. Rev. Lett. 124, 160502 (2020)

    Article  ADS  Google Scholar 

  92. J. Carrasco et al., PRX Quantum. 2, 010102 (2021)

    Article  Google Scholar 

  93. W.-Y. Zhang et al., arXiv:2210.02936 (2022).

  94. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  95. R. Raussendorf, D.E. Browne, H.J. Briegel, Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support by grant from National Research Foundation (NRF) 2019M3E4A1080401 and 2020R1C1C1010863, and KAIST UP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-yoon Choi.

Ethics declarations

Conflict of interest

The authors state that they have no known financial interests or personal relationships that could have influenced the work reported in this paper in any way that could be perceived as a competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Jy. Quantum simulations with ultracold atoms in optical lattices: past, present and future. J. Korean Phys. Soc. 82, 875–881 (2023). https://doi.org/10.1007/s40042-023-00777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00777-y

Keywords

Navigation