Skip to main content
Log in

Use of vector polarizability to manipulate alkali-metal atoms

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We review a few ideas and experiments that our laboratory in Korea University has proposed and carried out to use vector polarizability \(\beta \) to manipulate alkali-metal atoms. \(\beta \) comes from spin-orbit coupling, and it produces an ac Stark shift that resembles a Zeeman shift. When a circularly polarized laser field is properly detuned between the \(D_1\) and \(D_2\) transitions, an ac Stark shift of a ground-state atom takes the form of a pure Zeeman shift. We call it analogous Zeeman effect, and experimentally demonstrated optical Stern–Gerlach effect and an optical trap that behaves exactly like a magnetic trap. By tuning polarization of a trapping beam, and thereby controlling a shift proportional to \(\beta \), we demonstrated elimination of an inhomogeneous broadening of a ground hyperfine transition in an optical trap. We call it magic polarization. We also showed significant narrowing of a Raman sideband transition at a specific well depth. A Raman sideband in an optical trap is broadened owing to anharmonicity of the trap potential, and the broadening can be eliminated by \(\beta \)-induced differential ac Stark shift at a magic well depth. Finally, we proposed and experimentally demonstrated a cooling scheme that incorporated the idea of velocity-selective coherent population trapping to Raman sideband cooling to enhance cooling efficiency of the latter outside the Lamb–Dicke regime. We call it motion-selective coherent population trapping, and \(\beta \) is responsible for the selectivity. We include as a Supplementary Material a program file that calculates both scalar and vector polarizabilities of a given alkali-metal atom when wavelength of an applied field is specified. It also calculates depth of a potential well and photon-scattering rate of a trapped atom in a specific ground state when power, minimum spot size, and polarization of a trap beam are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Cho, Analogous Zeeman effect from the tensor polarizability in alkali atoms. J. Korean Phys. Soc. 30, 373 (1997)

    ADS  Google Scholar 

  2. C.Y. Park, H. Noh, C.M. Lee, D. Cho, Measurement of the Zeeman-like ac Stark shift. Phys. Rev. A. 63, 032512 (2001). https://doi.org/10.1103/PhysRevA.63.032512

    Article  ADS  Google Scholar 

  3. C.Y. Park, J.Y. Kim, J.M. Song, D. Cho, Optical Stern-Gerlach effect from the Zeeman-like ac Stark shift. Phys. Rev. A. 65, 033410 (2002). https://doi.org/10.1103/PhysRevA.65.033410

    Article  ADS  Google Scholar 

  4. K.L. Corwin, S.J.M. Kuppens, D. Cho, C.E. Wieman, Spin-polarized atoms in a circularly polarized optical dipole trap. Phys. Rev. Lett. 83, 1311 (1999). https://doi.org/10.1103/PhysRevLett.83.1311

    Article  ADS  Google Scholar 

  5. J.M. Choi, D. Cho, Elimination of inhomogeneous broadening for a ground-state hyperfine transition in an optical trap. J. Phys. Conf. Ser. 80, 012037 (2007). https://doi.org/10.1088/1742-6596/80/1/012037

    Article  Google Scholar 

  6. H. Kim, H.S. Han, D. Cho, Magic polarization for optical trapping of atoms without Stark-induced dephasing. Phys. Rev. Lett. 111, 243004 (2013). https://doi.org/10.1103/PhysRevLett.111.243004

    Article  ADS  Google Scholar 

  7. M.H. Seo, S. Park, D. Cho, Relaxation of atomic temperature anisotropy in a one-dimensional optical lattice enhanced by dynamic control of the aspect ratio. Phys. Rev. A 101, 043611 (2020). https://doi.org/10.1103/PhysRevA.101.043611

    Article  ADS  Google Scholar 

  8. H.G. Lee, S. Park, M.H. Seo, D. Cho, Motion-selective coherent population trapping for subrecoil cooling of optically trapped atoms outside the Lamb-Dicke regime. Phys. Rev. A 106, 023324 (2022). https://doi.org/10.1103/PhysRevA.106.023324

    Article  ADS  Google Scholar 

  9. S. Park, M.H. Seo, R.A. Kim, D. Cho, Motion-selective coherent population trapping by Raman sideband cooling along two paths in a \(\Lambda \) configuration. Phys. Rev. A. 106, 023323 (2022). https://doi.org/10.1103/PhysRevA.106.023323

    Article  ADS  Google Scholar 

  10. A. Khadjavi, A. Lurio, W. Happer, Stark effect in the excited states of Rb, Cs, Cd, and Hg\(^\ast \). Phys. Rev. 167, 128 (1968). https://doi.org/10.1103/PhysRev.167.128

    Article  ADS  Google Scholar 

  11. G. Racah, Theory of complex spectra II. Phys. Rev. 62, 438 (1942). https://doi.org/10.1103/PhysRev.62.438

    Article  ADS  Google Scholar 

  12. A.R. Edmonds, Angular momentum in quantum mechanics (Princeton University Press, Princeton, New Jersey, 1960), p.75

    Google Scholar 

  13. http://physics.nist.gov/cgi-bin/ASD/energy1.pl

  14. Z.T. Lu, K.L. Corwin, M.J. Renn, M.H. Anderson, E.A. Cornell, C.E. Wieman, Low-velocity intense source of atoms from a magneto-optical trap. Phys. Rev. Lett. 77, 3331 (1996). https://doi.org/10.1103/PhysRevLett.77.3331

    Article  ADS  Google Scholar 

  15. R.J. Cook, Optical Stern-Gerlach effect. Phys. Rev. A. 35, 3844 (1987). https://doi.org/10.1103/PhysRevA.35.3844

    Article  ADS  Google Scholar 

  16. T. Sleator, T. Pfau, V. Balykin, O. Carnal, J. Mlynek, Experimental demonstration of the optical Stern-Gerlach effect. Phys. Rev. Lett. 68, 1996 (1992). https://doi.org/10.1103/PhysRevLett.68.1996

    Article  ADS  Google Scholar 

  17. M. Karski, L. Förster, J.M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009). https://doi.org/10.1126/science.1174436

    Article  ADS  Google Scholar 

  18. M. Anderlini, P.J. Lee, B.L. Brown, J. Sebby-Strabley, W.D. Phillips, J.V. Porto, Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452 (2007). https://doi.org/10.1038/nature06011

    Article  ADS  Google Scholar 

  19. J.Y. Kim, J.S. Lee, J.H. Han, D. Cho, Optical dipole trap without inhomogeneous ac Stark broadening. J. Korean Phys. Soc. 42, 483 (2003)

    Google Scholar 

  20. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, A. Rauschenbeutel, D. Meschede, Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A. 72, 023406 (2005). https://doi.org/10.1103/PhysRevA.72.023406

    Article  ADS  Google Scholar 

  21. A. Kaplan, M.F. Andersen, N. Davidson, Suppression of inhomogeneous broadening in rf spectroscopy of optically trapped atoms. Phys. Rev. A. 66, 045401 (2002). https://doi.org/10.1103/PhysRevA.66.045401

    Article  ADS  Google Scholar 

  22. A.G. Radnaev, Y.O. Dudin, R. Zhao, H.H. Jen, S.D. Jenkins, A. Kuzmich, T.A.B. Kennedy, A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894 (2010). https://doi.org/10.1038/NPHYS1773

    Article  Google Scholar 

  23. Y. Sagi, I. Almog, N. Davidson, Process tomography of dynamical decoupling in a dense cold atomic ensemble. Phys. Rev. Lett. 105, 053201 (2010). https://doi.org/10.1103/PhysRevLett.105.053201

    Article  ADS  Google Scholar 

  24. N. Davidson, H.J. Lee, C.S. Adams, M. Kasevich, S. Chu, Long atomic coherence times in an optical dipole trap. Phys. Rev. Lett. 74, 1311 (1995). https://doi.org/10.1103/PhysRevLett.74.1311

    Article  ADS  Google Scholar 

  25. V.V. Flambaum, V.A. Dzuba, A. Derevianko, Magic frequencies for cesium primary-frequency standard. Phys. Rev. Lett. 101, 220801 (2008). https://doi.org/10.1103/PhysRevLett.101.220801

    Article  ADS  Google Scholar 

  26. M.S. Safronova, U.I. Safronova, C.W. Clark, Magic wavelengths for optical cooling and trapping of lithium. Phys. Rev. A. 86, 042505 (2012). https://doi.org/10.1103/PhysRevA.86.042505

    Article  ADS  Google Scholar 

  27. H.S. Han, H.G. Lee, D. Cho, Site-specific and coherent manipulation of individual qubits in a 1D optical lattice with a 532-nm site separation. Phys. Rev. Lett. 122, 133201 (2019). https://doi.org/10.1103/PhysRevLett.122.133201

    Article  ADS  Google Scholar 

  28. K. Kwon, K. Kim, J. Hur, S. Huh, J. Choi, Site-resolved imaging of a bosonic Mott insulator of \(^7\)Li atoms. Phys. Rev. A. 105, 033323 (2022). https://doi.org/10.1103/PhysRevA.105.033323

    Article  ADS  Google Scholar 

  29. A. Derevianko, Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms. Phys. Rev. A 81, 051606(R) (2010). https://doi.org/10.1103/PhysRevA.81.051606

    Article  ADS  Google Scholar 

  30. C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995). https://doi.org/10.1103/PhysRevLett.75.4011

    Article  ADS  Google Scholar 

  31. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji, Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826 (1988). https://doi.org/10.1103/PhysRevLett.61.826

    Article  ADS  Google Scholar 

  32. H. Kim, H.S. Han, T.H. Yoon, D. Cho, Coherent population trapping in a \(\Lambda \) configuration coupled by magnetic dipole interactions. Phys. Rev. A. 89, 032507 (2014). https://doi.org/10.1103/PhysRevA.89.032507

    Article  ADS  Google Scholar 

  33. L. Anderegg, B.L. Augenbraun, Y. Bao, S. Burchesky, L.W. Cheuk, W. Ketterle, J.M. Doyle, Laser cooling of optically trapped molecules. Nat. Phys. 14, 890 (2018). https://doi.org/10.1038/s41567-018-0191-z

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (Grant No. NRF-2022R1F1A1075131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Numerical calculation of scalar and vector polarizabilities

Appendix A: Numerical calculation of scalar and vector polarizabilities

In the Excel file of the Supplementary Material, to obtain numerical values of \(\alpha \) and \(\beta \), we use the definitions in Eqs. (8) and (9), respectively, including the off-resonant terms. Those terms are not negligible when a trap beam is far detuned. When the principal quantum number of the ground state of an alkali-metal atom is n, we include couplings to only the \(nP_{J^\prime }\) and \((n+1)P_{J^\prime }\) states with \(J^\prime =1/2,3/2\). To obtain numerical values of a and b, we use Eqs. (19) and (20), respectively, and restrict the sums to \(n^\prime =n\). Since we consider a far-detuned trap beam, either ground or excited state hyperfine splitting is not important, and effect of an isotope shift is negligible too.

There are two definitions for a reduced matrix element commonly used in literature. We follow that of Racah [11], according to which the Wigner–Eckart theorem is written as [12]

$$\begin{aligned} \langle n^\prime , J^\prime , m_J^\prime | d_q | n, J, m_J \rangle = (-1)^{J^\prime -m^\prime } \left( \begin{array}{ccc} J^\prime &{} 1 &{} J \\ -m_J^\prime &{} q &{} m_J \end{array} \right) \langle n^\prime J^\prime || d || n J \rangle , \end{aligned}$$
(A1)

and the reduced matrix element for an electric dipole moment between the \(|n^\prime P_{J^\prime } \rangle \) and \(|nS_{1/2} \rangle \) states of an alkali-metal atom is related to the lifetime \(\tau (n^\prime P_{J^\prime })\) by

$$\begin{aligned} |\langle n^\prime P_{J^\prime } || d || n S_{1/2} \rangle |^2 = \frac{1}{\tau (n^\prime P_{J^\prime })} \frac{3\pi \epsilon _0\hbar c^3}{\omega _0^3}(2J^\prime +1), \end{aligned}$$
(A2)

where \(\omega _0\) is the \(|nS_{1/2} \rangle \) \(\rightarrow \) \(|n^\prime P_{J^\prime } \rangle \) transition frequency. For spectroscopic data, we use NIST Atomic Spectra Database Lines Data [13], where Einstein coefficient \(A(n^\prime P_{J^\prime }) = 1/\tau (n^\prime P_{J^\prime })\) of the upper state \(|n^\prime P_{J^\prime } \rangle \) and wavelength \(\lambda _0 = 2\pi c /\omega _0\) are tabulated.

In the Excel file, for a given wavelength \(\lambda \) of a trap beam, \(\alpha , \beta \) and ab are calculated in atomic units. For given power P, minimum spot size \(w_0\) (\(e^{-2}\) intensity radius), and degree of circularity \(\eta \) of the trap beam, well depth \(U_\textrm{AC}(F,m_F)\) for the ground hyperfine state \(|nS_{1/2}, F, m_F \rangle \) according to Eq. (10) is given in mK:

$$\begin{aligned} U_{\mathrm{{AC}}} (F,m_F)= (\alpha -\eta \beta g_F m_F)(c\mu _0 I_0/2). \end{aligned}$$
(A3)

A photon-scattering rate \(R_\gamma (F,m_F)\) according to Eq. (18) is given in s\(^{-1}\):

$$\begin{aligned} R_\gamma (F,m_F)= (a-\eta b g_F m_F)(c\mu _0 I_0/2)\Gamma , \end{aligned}$$
(A4)

where we use \(\Gamma = A(nP_{1/2})\) of the \(D_1\) transition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, D. Use of vector polarizability to manipulate alkali-metal atoms. J. Korean Phys. Soc. 82, 864–874 (2023). https://doi.org/10.1007/s40042-023-00776-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00776-z

Keywords

Navigation