Skip to main content
Log in

Laser cooling of molecules

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A recent progress on laser cooling of molecules is summarized. Since the development during the 1980s for atomic species, laser cooling has been the very beginning step to cool and trap atoms for frontier research on quantum simulations, quantum sensing and precision measurements. Despite the complex internal structures of molecules, laser cooling of molecules have been realized with the deepened understanding of molecular structures and interaction between light and molecules. The development of laser technology over the last decades has also been a great aid for the laser cooling of molecules because many lasers are necessary to successfully cool the molecules. A detailed principle and development of laser cooling of molecules as well as the current status of the field are reviewed to give an introduction to the growing field of ultracold molecular physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Yu, A. Lopez, W.A. Goddard III, N.R. Hutzler, Multivalent optical cycling centers in polyatomic molecules. Phys. Chem. Chem. Phys. 25(1), 154-170 (2023)

    Article  Google Scholar 

  2. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, Cold and ultracold molecules: science, technology and applications. New J. Phys. 11(5), 055049 (2009)

    Article  ADS  Google Scholar 

  3. J.L. Bohn, A.M. Rey, J. Ye, Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science (New York, N.Y.) 357(6355), 1002–1010 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M.D. Rosa, Laser-cooling molecules. Eur. Phys. J. D 31(2), 395–402 (2004)

    Article  ADS  Google Scholar 

  5. D. McCarron, Laser cooling and trapping molecules. J. Phys. B: At. Mol. Opt. Phys. 51(21), 212001 (2018)

    Article  Google Scholar 

  6. N.J. Fitch, M.R. Tarbutt, Laser-cooled molecules. Adv. At. Mol. Opt. Phys. 70, 157–262 (2021)

    Article  ADS  Google Scholar 

  7. N.B. Vilas, C. Hallas, L. Anderegg, P. Robichaud, A. Winnicki, D. Mitra, J.M. Doyle, Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606(7912), 70–74 (2022)

    Article  ADS  Google Scholar 

  8. J.F. Barry, D.J. McCarron, E.B. Norrgard, M.H. Steinecker, D. DeMille, Magneto-optical trapping of a diatomic molecule. Nature 512(7514), 286–289 (2014)

    Article  ADS  Google Scholar 

  9. E.B. Norrgard, D.J. McCarron, M.H. Steinecker, M.R. Tarbutt, D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116(6), 063004 (2016)

    Article  ADS  Google Scholar 

  10. L. Anderegg, B.L. Augenbraun, E. Chae, B. Hemmerling, N.R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, J.M. Doyle, Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119(10), 103201 (2017)

    Article  ADS  Google Scholar 

  11. S. Truppe, H.J. Williams, M. Hambach, L. Caldwell, N.J. Fitch, E.A. Hinds, B.E. Sauer, M.R. Tarbutt, Molecules cooled below the Doppler limit. Nat. Phys. 13(12), 1173–1176 (2017)

    Article  Google Scholar 

  12. A.L. Collopy, S. Ding, Y. Wu, I.A. Finneran, L. Anderegg, B.L. Augenbraun, J.M. Doyle, J. Ye, 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121(21), 213201 (2018)

    Article  ADS  Google Scholar 

  13. J. Lim, J.R. Almond, M.A. Trigatzis, J.A. Devlin, N.J. Fitch, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120(12), 123201 (2018)

    Article  ADS  Google Scholar 

  14. R.L. McNally, I. Kozyryev, S. Vazquez-Carson, K. Wenz, T. Wang, T. Zelevinsky, Optical cycling, radiative deflection and laser cooling of barium monohydride (138Ba1H). New J. Phys. 22(8), 083047 (2020)

    Article  ADS  Google Scholar 

  15. S.F. Vázquez-Carson, Q. Sun, J. Dai, D. Mitra, T. Zelevinsky, Direct laser cooling of calcium monohydride molecules. New J. Phys. 24(8), 083006 (2022)

    Article  ADS  Google Scholar 

  16. Y. Zhang, Z. Zeng, Q. Liang, W. Bu, B. Yan, Doppler cooling of buffer-gas-cooled barium monofluoride molecules. Phys. Rev. A 105(3), 033307 (2022)

    Article  ADS  Google Scholar 

  17. S. Hofsass, M. Doppelbauer, S.C. Wright, S. Kray, B.G. Sartakov, J. Pérez-Ríos, G. Meijer, S. Truppe, Optical cycling of AlF molecules. New J. Phys. 23(7), 075001 (2021)

    Article  ADS  Google Scholar 

  18. R. Gu, K. Yan, D. Wu, J. Wei, Y. Xia, J. Yin, Radiative force from optical cycling on magnesium monofluoride. Phys. Rev. A 105(4), 042806 (2022)

    Article  ADS  Google Scholar 

  19. D.J. McCarron, J.C. Shaw, S. Hannig, Stable 2 W continuous-wave 261.5 nm laser for cooling and trapping aluminum monochloride. Opt. Express 29(23), 37140–37149 (2021)

    Article  ADS  Google Scholar 

  20. J.R. Daniel, C. Wang, K. Rodriguez, B. Hemmerling, T.N. Lewis, C. Bardeen, A. Teplukhin, B.K. Kendrick, Spectroscopy on the A \(^1\Pi\)\(\leftarrow\)\(\text{ X}^1\Sigma ^+\) transition of buffer-gas-cooled AlCl. Phys. Rev. A 104(1), 012801 (2021)

    Article  ADS  Google Scholar 

  21. E.B. Norrgard, E.R. Edwards, D.J. McCarron, M.H. Steinecker, D. DeMille, Shah Saad Alam, S.K. Peck, N.S. Wadia, L.R. Hunter, Hyperfine structure of the B \(^3\Pi _{1}\) state and predictions of optical cycling behavior in the \(\text{ X } \rightarrow \text{ B }\) transition of TlF. Phys. Rev. A 95(6), 062506 (2017)

    Article  ADS  Google Scholar 

  22. J.C. Schnaubelt, J.C. Shaw, D.J. McCarron, Cold CH radicals for laser cooling and trapping (2021). arXiv:2109.03953

  23. B.L. Augenbraun, Z.D. Lasner, A. Frenett, H. Sawaoka, C. Miller, T.C. Steimle, J.M. Doyle, Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys. 22(2), 022003 (2020)

    Article  ADS  Google Scholar 

  24. I. Kozyryev, L. Baum, K. Matsuda, B.L. Augenbraun, L. Anderegg, A.P. Sedlack, J.M. Doyle, Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118(17), 173201 (2017)

    Article  ADS  Google Scholar 

  25. D. Mitra, N.B. Vilas, C. Hallas, L. Anderegg, B.L. Augenbraun, L. Baum, C. Miller, S. Raval, J.M. Doyle, Direct laser cooling of a symmetric top molecule. Science 369(6509), 1366–1369 (2020)

    Article  ADS  Google Scholar 

  26. G. Lao, G.Z. Zhu, C.E. Dickerson, B.L. Augenbraun, A.N. Alexandrova, J.R. Caram, E.R. Hudson, W.C. Campbell, Laser spectroscopy of aromatic molecules with optical cycling centers: strontium (I) phenoxides. J. Phys. Chem. Lett. 13(47), 11029-11035 (2022)

    Article  Google Scholar 

  27. S. Burchesky, L. Anderegg, Y. Bao, S.S. Yu, E. Chae, W. Ketterle, K.K. Ni, J.M. Doyle, Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127(12), 123202 (2021)

    Article  ADS  Google Scholar 

  28. L. Anderegg, S. Burchesky, Y. Bao, S.S. Yu, T. Karman, E. Chae, K.K. Ni, W. Ketterle, J.M. Doyle, Observation of microwave shielding of ultracold molecules. Science 373(6556), 779–782 (2021)

    Article  ADS  Google Scholar 

  29. C.M. Holland, Y. Lu, L.W. Cheuk, On-demand entanglement of molecules in a reconfigurable optical tweezer array (2022). arXiv:2210.06309

  30. B.L. Augenbraun, J.M. Doyle, T. Zelevinsky, I. Kozyryev, Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10(3), 031022 (2020)

    Google Scholar 

  31. C.E. Dickerson, C. Chang, H. Guo, A.N. Alexandrova, Fully saturated hydrocarbons as hosts of optical cycling centers. J. Phys. Chem. A 126(51), 9644-9650 (2022)

    Article  Google Scholar 

  32. B.K. Stuhl, B.C. Sawyer, D. Wang, J. Ye, Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101(24), 243002 (2008)

    Article  ADS  Google Scholar 

  33. E.S. Shuman, J.F. Barry, D.R. Glenn, D. DeMille, Radiative force from optical cycling on a diatomic molecule. Phys. Rev. Lett. 103(22), 223001 (2009)

    Article  ADS  Google Scholar 

  34. E.S. Shuman, J.F. Barry, D. Demille, Laser cooling of a diatomic molecule. Nature 467(7317), 820–823 (2010)

    Article  ADS  Google Scholar 

  35. M.T. Hummon, M. Yeo, B.K. Stuhl, A.L. Collopy, Y. Xia, J. Ye, 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110(14), 143001 (2013)

    Article  ADS  Google Scholar 

  36. N.R. Hutzler, H.-I. Lu, J.M. Doyle, The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112(9), 4803–4827 (2012)

    Article  Google Scholar 

  37. P. Kaebert, M. Stepanova, T. Poll, M. Petzold, S. Xu, M. Siercke, S. Ospelkaus, Characterizing the Zeeman slowing force for \(^{40}\)Ca\(^{19}\)F molecules. New J. Phys. 23(9), 093013 (2021)

    Article  ADS  Google Scholar 

  38. B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G.K. Drayna, N.R. Hutzler, A.L. Collopy, J. Ye, W. Ketterle, J.M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular MOT. J. Phys. B: At. Mol. Opt. Phys. 49(17), 174001 (2016)

    Article  ADS  Google Scholar 

  39. J.F. Barry, E.S. Shuman, E.B. Norrgard, D. DeMille, Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108(10), 103002 (2012)

    Article  ADS  Google Scholar 

  40. L.G. Anderegg, Ultracold molecules in optical arrays: from laser cooling to molecular collisions. PhD thesis, Harvard University (2019)

  41. M.R. Tarbutt, Magneto-optical trapping forces for atoms and molecules with complex level structures. New J. Phys. 17(1), 015007 (2015)

    Article  ADS  Google Scholar 

  42. M.R. Tarbutt, T.C. Steimle, Modeling magneto-optical trapping of CaF molecules. Phys. Rev. A At. Mol. Opt. Phys. 92(5), 053401 (2015)

    Article  ADS  Google Scholar 

  43. D.J. Mccarron, E.B. Norrgard, M.H. Steinecker, D. Demille, Improved magneto-optical trapping of a diatomic molecule. New J. Phys. 17(3), 035014 (2015)

    Article  ADS  Google Scholar 

  44. E. Chae, Laser slowing of CaF molecules and progress towards a dual-MOT for Li and CaF. PhD thesis, Harvard University (2016)

  45. L. Caldwell, J.A. Devlin, H.J. Williams, N.J. Fitch, E.A. Hinds, B.E. Sauer, M.R. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules. Phys. Rev. Lett. 123(3), 033202 (2019)

    Article  ADS  Google Scholar 

  46. T.K. Langin, V. Jorapur, Y. Zhu, Q. Wang, D. DeMille, Polarization enhanced deep optical dipole trapping of \(\Lambda\)-cooled polar molecules. Phys. Rev. Lett. 127(16), 163201 (2021)

    Article  ADS  Google Scholar 

  47. L.W. Cheuk, L. Anderegg, B.L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, J.M. Doyle, \(\Lambda\)-Enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121(8), 083201 (2018)

    Article  ADS  Google Scholar 

  48. S. Ding, Y. Wu, I.A. Finneran, J.J. Burau, J. Ye, Sub-Doppler cooling and compressed trapping of YO molecules at \(\mu\) K temperatures. Phys. Rev. X 10(2), 021049 (2020)

    Google Scholar 

  49. D.J. McCarron, M.H. Steinecker, Y. Zhu, D. Demille, Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121(1), 013202 (2018)

    Article  ADS  Google Scholar 

  50. H.J. Williams, L. Caldwell, N.J. Fitch, S. Truppe, J. Rodewald, E.A. Hinds, B.E. Sauer, M.R. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120(16), 163201 (2018)

    Article  ADS  Google Scholar 

  51. Y. Wu, J.J. Burau, K. Mehling, J. Ye, S. Ding, High phase-space density of laser-cooled molecules in an optical lattice. Phys. Rev. Lett. 127(26), 263201 (2021)

    Article  ADS  Google Scholar 

  52. L. Anderegg, L.W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K.-K. Ni, J.M. Doyle, An optical tweezer array of ultracold molecules. Science 365(6458), 1156–1158 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of Korea (Grant nos. 2020R1A4A1018015, 2021R1C1C1009450, 2021M3H3A1085299, 2022M3E4A1077340, 2022M3C1C8097622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunmi Chae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, E. Laser cooling of molecules. J. Korean Phys. Soc. 82, 851–863 (2023). https://doi.org/10.1007/s40042-023-00775-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00775-0

Keywords

Navigation