Skip to main content
Log in

Quantum computing with Rydberg atom graphs

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In recent years, Rydberg atom graphs, which are the arrangement of atoms of which the interaction through Rydberg state excitation can be represented by a mathematical graph, have emerged as a promising qubit platform for quantum computing and quantum simulation, through implementing quantum gates and circuits, probing quantum phase transitions in designed atom arrays, and solving the classically difficult class of computational problems. Here we briefly review the remarkable progress of the related techniques and research activities involved with the Rydberg atom graphs. The ease of scalability and controllability of Rydberg atom graphs might enable the quantum advantage in the NISQ (noisy intermediate scale quantum) era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  2. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  3. E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  4. H. Kim, W. Lee, H. Lee, H. Jo, Y. Song, J. Ahn, In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016)

    Article  ADS  Google Scholar 

  5. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, A. Browaeys, An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021 (2016)

    Article  ADS  Google Scholar 

  6. M. Endres, H. Bernien, A. Keesling, H. Levine, E.R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, M.D. Lukin, Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 6315, 1024 (2016)

    Article  Google Scholar 

  7. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  8. J. Lim, H. Lee, J. Ahn, Review of cold Rydberg atoms and their applications. J. Kor. Phys. Soc. 63, 867 (2013)

    Article  ADS  Google Scholar 

  9. M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B 49, 202001 (2016)

    Article  ADS  Google Scholar 

  10. A. Browaeys, T. Lahaye, Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132 (2020)

    Article  Google Scholar 

  11. M. Morgado, S. Whitlock, Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci. 3, 023501 (2021)

    Article  ADS  Google Scholar 

  12. X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y.-C. Liu, M.K. Tey, L. You, A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 30, 020305 (2021)

    Article  ADS  Google Scholar 

  13. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)

    Article  ADS  Google Scholar 

  14. N. Schlosser, G. Reymond, I. Protsenko, P. Grangier, Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024 (2001)

    Article  ADS  Google Scholar 

  15. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, A. Browaeys, Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014)

    Google Scholar 

  16. D.O. Mello, D. Schäffner, J. Werkmann, T. Preuschoff, L. Kohfahl, M. Schlosser, G. Birkl, Defect-free assembly of 2D clusters of more than 100 single-atom quantum systems. Phys. Rev. Lett. 122, 203601 (2019)

    Article  ADS  Google Scholar 

  17. M.J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, M. Saffman, Two-dimensional lattice of blue-detuned atom traps using a projected Gaussian beam array. Phys. Rev. A 88, 013420 (2013)

    Article  ADS  Google Scholar 

  18. P. Xu, X. He, J. Wang, M. Zhan, Trapping a single atom in a blue detuned optical bottle beam trap. Opt. Lett. 35, 2164 (2010)

    Article  ADS  Google Scholar 

  19. Y.R.P. Sortais, H. Marion, C. Tuchendler, A.M. Lance, M. Lamare, P. Fournet, C. Armellin, R. Mercier, G. Messin, A. Browaeys, P. Grangier, Diffraction-limited optics for single-atom manipulation. Phys. Rev. A 75, 013406 (2007)

    Article  ADS  Google Scholar 

  20. S.K. Dutta, J.R. Guest, D. Feldbaum, A. Walz-Flannigan, G. Raithel, Ponderomotive optical lattice for Rydberg atoms. Phys. Rev. Lett. 85, 5551 (2000)

    Article  ADS  Google Scholar 

  21. S. Zhang, F. Robicheaux, M. Saffman, Magic-wavelength optical traps for Rydberg atoms. Phys. Rev. A 84, 043408 (2011)

    Article  ADS  Google Scholar 

  22. D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T. Boulier, A. Browaeys, T. Lahaye, Three-dimensional trapping of individual Rydberg atoms in ponderomotive bottle beam traps. Phys. Rev. Lett. 124, 023201 (2020)

    Article  ADS  Google Scholar 

  23. P. Huft, Y. Song, T.M. Graham, K. Jooya, S. Deshpande, C. Fang, M. Kats, M. Saffman, Simple, passive design for large optical trap arrays for single atoms. Phys. Rev. A 105, 063111 (2022)

    Article  ADS  Google Scholar 

  24. N. Schlosser, G. Reymond, P. Grangier, Collisional blockade in microscopic optical dipole traps. Phys. Rev. Lett. 89, 023005 (2002)

    Article  ADS  Google Scholar 

  25. T. Cizmar, M. Mazilu, K. Dholakia, In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 388 (2010)

    Article  ADS  Google Scholar 

  26. M. Persson, D. Engstrom, M. Goksor, Reducing the effect of pixel crosstalk in phase only spatial light modulators. Opt. Express 20, 22334 (2012)

    Article  ADS  Google Scholar 

  27. H. Tamura, T. Unakami, J. He, Y. Miyamoto, K. Nakagawa, Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements. Opt. Express 24, 8132 (2016)

    Article  ADS  Google Scholar 

  28. D. Kim et al., Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt. Lett. 44, 3178 (2019)

    Article  ADS  Google Scholar 

  29. W. Lee, H. Kim, J. Ahn, Defect-free atomic array formation using the Hungarian matching algorithm. Phys. Rev. A 95, 053424 (2017)

    Article  ADS  Google Scholar 

  30. H. Kim, M. Kim, W. Lee, J. Ahn, Gerchberg-Saxton algorithm for tweezer-trap atom arrangements. Opt. Express 27(3), 2184 (2019)

    Article  ADS  Google Scholar 

  31. W. Lee, H. Kim, J. Ahn, Three-dimensional rearrangement of single atoms using actively controlled optical microtraps. Opt. Express 24, 9816 (2016)

    Article  ADS  Google Scholar 

  32. K.-N. Schymik, V. Lienhard, D. Barredo, P. Scholl, H. Williams, A. Browaeys, T. Lahaye, Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A 102, 063107 (2020)

    Article  ADS  Google Scholar 

  33. C. Sheng, J. Hou, X. He, P. Xu, K. Wang, J. Zhuang, X. Li, M. Liu, J. Wang, M. Zhan, Efficient preparation of two-dimensional defect-free atom arrays with near-fewest sorting-atom moves. Phys. Rev. Res. 3, 023008 (2021)

    Article  Google Scholar 

  34. S. Ebadi, T.T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W.W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletic, M.D. Lukin, Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227 (2021)

    Article  ADS  Google Scholar 

  35. V. Lienhard, S. de Léséleuc, T. Lahaye, A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79 (2018)

    Article  ADS  Google Scholar 

  36. Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, A. Browaeys, Coherent excitation of a single atom to a Rydberg state. Phys. Rev. A 82, 013405 (2010)

    Article  ADS  Google Scholar 

  37. S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, T. Lahaye, Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A 97, 053803 (2018)

    Article  ADS  Google Scholar 

  38. H. Levine, A.R. Keesling, A. Omran, H. Bernien, S. Schwartz, A.S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M.D. Lukin, High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018)

    Article  ADS  Google Scholar 

  39. T.M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jian, M.T. Lichtman, Y. Sun, M. Ebert, M. Saffman, Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett. 123, 230501 (2019)

    Article  ADS  Google Scholar 

  40. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  41. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, D. Meschede, Coherence properties and quantum state transportation in an optical conveyor belt. Phys. Rev. Lett. 91, 213002 (2003)

    Article  ADS  Google Scholar 

  42. M. Martinez-Dorantes, W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Völzke, D. Meschede, Fast nondestructive parallel readout of neutral atom registers in optical potentials. Phys. Rev. Lett. 119, 180503 (2017)

    Article  ADS  Google Scholar 

  43. M. Kwon, M.F. Ebert, T.G. Walker, M. Saffman, Parallel low-loss measurement of multiple atomic qubits. Phys. Rev. Lett. 119, 180504 (2017)

    Article  ADS  Google Scholar 

  44. S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, A. Browaeys, Coherent dipole-dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance. Nat. Phys. 10, 914 (2014)

    Article  Google Scholar 

  45. D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  46. L. Isenhower, E. Urban, X.L. Zhang, A.T. Gill, T. Henage, T.A. Johnson, T.G. Walker, M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  47. M. Ebert, A. Gill, M. Gibbons, X. Zhang, M. Saffman, T.G. Walker, Atomic Fock state preparation using Rydberg blockade. Phys. Rev. Lett. 112, 043602 (2014)

    Article  ADS  Google Scholar 

  48. Y.-Y. Jau, A.M. Hankin, T. Keating, I.H. Deutsch, G.W. Biedermann, Entangling atomic spins with a Rydberg dressed spin-flip blockade. Nat. Phys. 12, 71 (2015)

    Article  Google Scholar 

  49. H. Jo, Y. Song, M. Kim, J. Ahn, Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett. 124, 033603 (2020)

    Article  ADS  Google Scholar 

  50. A. Omran et al., Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 6453, 570 (2019)

    Article  Google Scholar 

  51. X.-L. Wang, J.-W. Pan et al., 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018)

    Article  ADS  Google Scholar 

  52. T. Monz, R. Blatt et al., 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  53. C. Song, K. Xu, H. Li, H. Fan, D. Zheng, H. Wang et al., Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. T. Xia, M. Lichtman, K. Maller, A.W. Carr, M.J. Piotrowicz, L. Isenhower, M. Saffman, Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015)

    Article  ADS  Google Scholar 

  55. Y. Wang, A. Kumar, T.-Y. Wu, D.S. Weiss, Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Y. Song, J. Lim, J. Ahn, Berry-phase gates for fast and robust control of atomic clock states. Phys. Rev. Res. 2, 023045 (2020)

    Article  Google Scholar 

  57. H. Levine, D. Bluvstein, A. Keesling, T.T. Wang, S. Ebadi, G. Semeghini, A. Omran, M. Greiner, V. Vuletić, M.D. Lukin, Dispersive optical systems for scalable Raman driving of hyperfine qubits. Phys. Rev. A 105, 032618 (2022)

    Article  ADS  Google Scholar 

  58. H. Levine, A. Keesling, G. Semeghini, A. Omran, T.T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, M.D. Lukin, Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019)

    Article  ADS  Google Scholar 

  59. Y. Sun, P. Xu, Controlled phase gate protocol for neutral atoms via off-resonant modulated driving. Phys. Rev. Appl. 13, 024059 (2020)

    Article  ADS  Google Scholar 

  60. F. Robicheaux, T.M. Graham, M. Saffman, Photon-recoil and laser-focusing limits to Rydberg gate fidelity. Phys. Rev. A 103, 022424 (2021)

    Article  ADS  Google Scholar 

  61. A. Pagano, S. Weber, D. Jaschke, T. Pfau, F. Meinert, S. Montangero, H.P. Büchler, Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms. Phys. Rev. Res. 4, 033019 (2022)

    Article  Google Scholar 

  62. Z. Fu, P. Xu, Y. Sun, Y.-Y. Liu, X.-D. He, X. Li, M. Liu, R.-B. Li, J. Wang, L. Liu, M.-S. Zhan, High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-phase gate. Phys. Rev. A 105, 042430 (2022)

    Article  ADS  Google Scholar 

  63. D. Bluvstein, H. Levine, G. Semeghini, T.T. Wang et al., A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451 (2022)

    Article  ADS  Google Scholar 

  64. T.M. Graham, Y. Song, M. Saffman et al., Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457 (2022)

    Article  ADS  Google Scholar 

  65. I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  66. E. Altman et al., Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021)

    Article  Google Scholar 

  67. H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, A. Browaeys, Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016)

    Article  ADS  Google Scholar 

  68. L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, A. Browaeys, Direct measurement of the van der Waals interaction between two Rydberg atoms. Phys. Rev. Lett. 110, 263201 (2013)

    Article  ADS  Google Scholar 

  69. M. Kim, Y. Song, J. Kim, J. Ahn, Quantum Ising hamiltonian programming in trio, quartet, and sextet qubit systems. PRX Quantum 1, 020323 (2020)

    Article  Google Scholar 

  70. H. Kim, Y. Park, K. Kim, H.-S. Sim, J. Ahn, Detailed balance of thermalization dynamics in Rydberg atom quantum simulators. Phys. Rev. Lett. 120, 180502 (2018)

    Article  ADS  Google Scholar 

  71. S. Sachdev, Quantum magnetism and criticality. Nat. Phys. 4, 173–185 (2008)

    Article  Google Scholar 

  72. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A.S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M.D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017)

    Article  ADS  Google Scholar 

  73. V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A. Browaeys, M. Schuler, L.P. Henry, A.M. Läuchli, Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X 8, 021070 (2018)

    Google Scholar 

  74. P. Scholl, M. Schuler, H.J. Williams, A.A. Eberharter, D. Barredo, K.N. Schymik, V. Lienhard, L.P. Henry, T.C. Lang, T. Lahaye, A.M. Läuchli, A. Browaeys, Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233 (2021)

    Article  ADS  Google Scholar 

  75. Y. Song, M. Kim, H. Hwang, W. Lee, J. Ahn, Quantum simulation of Cayley-tree Ising Hamiltonians with three-dimensional Rydberg atoms. Phys. Rev. Res. 3, 013286 (2021)

    Article  Google Scholar 

  76. A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletić, M.D. Lukin, Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature 568, 207 (2019)

    Article  ADS  Google Scholar 

  77. G. Semeghini, A. Vishwanath, M. Greiner, V. Vuletic, M.D. Lukin et al., Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242 (2021)

    Article  ADS  Google Scholar 

  78. L. Savary, L. Balents, Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016)

    Article  ADS  Google Scholar 

  79. A. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. J. Eisert, M. Friesdorf, C. Gogolin, Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124 (2015)

    Article  Google Scholar 

  81. D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  82. S. Moudgalya, B.A. Bernevig, N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results. Rep. Prog. Phys. 85, 086501 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  83. D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T.T. Wang, A.A. Michailidis, N. Maskara, W.W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, M.D. Lukin, Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. D.V. Else, C. Monroe, C. Nayak, N.Y. Yao, Discrete time crystals. Annu. Rev. Cond. Mat. Phys. 11, 467 (2020)

    Article  ADS  Google Scholar 

  85. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, C.S. Adams, Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015)

    Article  ADS  Google Scholar 

  86. S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, T. Lahaye, Optical control of the resonant dipole-dipole interaction between Rydberg atoms. Phys. Rev. Lett. 119, 053202 (2017)

    Article  ADS  Google Scholar 

  87. S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, S. Weber, N. Lang, H.P. Büchler, T. Lahaye, A. Browaeys, Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. P. Scholl, H.J. Williams, G. Bornet, F. Wallner, D. Barredo, L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, T. Lahaye, M. Weidemüller, A. Browaeys, Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022)

    Article  ADS  Google Scholar 

  89. H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D. Lukin, Quantum optimization for maximum independent set using Rydberg atom arrays, arXiv: 1808.10816

  90. M. Kim, K. Kim, J. Hwang, E.-G. Moon, J. Ahn, Rydberg quantum wires for maximum independent set problems. Nat. Phys. 18, 755 (2022)

    Article  Google Scholar 

  91. S. Ebadi, A. Keesling, M. Cain, T.T. Wang et al., Quantum optimization of maximum independent set using Rydberg atom arrays. Science 376, 1209 (2022)

    Article  ADS  Google Scholar 

  92. M.F. Serret, B. Marchand, T. Ayral, Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks. Phys. Rev. A 102, 052617 (2020)

    Article  ADS  Google Scholar 

  93. T. Albash, D.A. Lidar, Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  94. W. Lee, M. Kim, H. Jo, Y. Song, Coherent and dissipative dynamics of entangled few-body systems of Rydberg atoms. Phys. Rev. A 99, 043404 (2019)

    Article  ADS  Google Scholar 

  95. H. Sun, Y. Song, A. Byun, H. Jeong, J. Ahn, Imaging three-dimensional single-atom arrays all at once. Opt. Express 29, 4082 (2021)

    Article  ADS  Google Scholar 

  96. K.-N. Schymik, B. Ximenez, E. Bloch, D. Dreon, A. Signoles, F. Nogrette, D. Barredo, A. Browaeys, T. Lahaye, In situ equalization of single-atom loading in large-scale optical tweezer arrays. Phys. Rev. A 106, 022611 (2022)

    Article  ADS  Google Scholar 

  97. K.-N. Schymik, A. Browaeys et al., Single atoms with 6000-second trapping lifetimes in optical-tweezer arrays at cryogenic temperatures. Phys. Rev. Appl. 16, 034013 (2021)

    Article  ADS  Google Scholar 

  98. I.I. Beterov, M. Saffman, Rydberg blockade, Forster resonances, and quantum state measurements with different atomic species. Phys. Rev. A 92, 042710 (2015)

    Article  ADS  Google Scholar 

  99. Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D.J. Papoular, G.V. Shlyapnikov, M. Zhan, Entangling two individual atoms of different isotopes via Rydberg blockade. Phys Rev. Lett. 119, 160502 (2017)

    Article  ADS  Google Scholar 

  100. K. Singh, S. Anand, A. Pocklington, J.T. Kemp, H. Bernien, Dual-element, two-dimensional atom array with continuous-mode operation. Phys. Rev. X 12, 011040 (2022)

    Google Scholar 

  101. C. Sheng, J. Hou, X. He, K. Wang, R. Guo, J. Zhuang, B. Mamat, P. Xu, J. Wang. Liu, M. Zhan, Defect-free arbitrary-geometry assembly of mixed-species atom arrays. Phys. Rev. Lett. 128, 083202 (2022)

    Article  ADS  Google Scholar 

  102. I.S. Madjarov, J.P. Covey, A.L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J.R. Williams, M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857 (2020)

    Article  Google Scholar 

  103. J.T. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A.P. Burgers, J.D. Thompson, Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett. 128, 033201 (2022)

    Article  ADS  Google Scholar 

  104. A.P. Burgers, S. Ma, S. Saskin, J. Wilson, M.A. Alarcón, C.H. Greene, J.D. Thompson, Controlling Rydberg excitations using ion-core transitions in alkaline-earth atom-tweezer arrays. PRX Quantum 3, 020326 (2022)

    Article  ADS  Google Scholar 

  105. K. Barnes, B.J. Bloom, K. Kotru, M. McDonald et al., Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022)

    Article  ADS  Google Scholar 

  106. Y. Wu, S. Kolkowitz, S. Puri, J.D. Thompson, Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022)

    Article  ADS  Google Scholar 

  107. A. Jenkins, J.W. Lis, A. Senoo, W.F. McGrew, A.M. Kaufman, Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022)

    Google Scholar 

  108. S. Ma, Alex P. Burgers, G. Liu, J. Wilson, B. Zhang, J.D. Thompson, Universal gate operations on nuclear spin qubits in an optical tweezer array of 171Yb atoms. Phys. Rev. X 12, 021028 (2022)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Samsung Science and Technology Foundation (SSTF-BA1301-52). HJ acknowledges support from the Air Force Office of Scientific Research (FA2386-20-1-4068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewook Ahn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Ahn, J., Song, Y. et al. Quantum computing with Rydberg atom graphs. J. Korean Phys. Soc. 82, 827–840 (2023). https://doi.org/10.1007/s40042-023-00774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00774-1

Keywords

Navigation