Skip to main content
Log in

Entangling gates for trapped-ion quantum computation and quantum simulation

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The trapped-ion system has been a leading platform for practical quantum computation and quantum simulation since the first scheme of a quantum gate was proposed by Cirac and Zoller (Phys Rev Lett 74:4091, 1995). Quantum gates with trapped ions have shown the highest fidelity among all physical platforms. Recently, sophisticated schemes of quantum gates such as amplitude, phase, frequency modulation, or multi-frequency application, have been developed to make the gates fast, robust to many types of imperfections, and applicable to multiple qubits. Here, we review the basic principle and recent development of quantum gates with trapped ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  2. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Realization of the cirac-zoller controlled-not quantum gate. Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  4. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  5. H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  7. R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  8. C. Monroe, J. Kim, Scaling the ion trap quantum processor. Science 339, 1164 (2013)

    Article  ADS  Google Scholar 

  9. C. Monroe, W.C. Campbell, L.-M. Duan, Z.-X. Gong, A.V. Gorshkov, P. Hess, R. Islam, K. Kim, N.M. Linke, G. Pagano et al., Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Sørensen, K. Mølmer, Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999). https://doi.org/10.1103/PhysRevLett.82.1971

    Article  ADS  Google Scholar 

  11. K. Mølmer, A. Sørensen, Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999)

    Article  ADS  Google Scholar 

  12. A. Sørensen, K. Mølmer, Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000). https://doi.org/10.1103/PhysRevA.62.022311

    Article  ADS  Google Scholar 

  13. C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q. Turchette, W.M. Itano, D.J. Wineland et al., Experimental entanglement of four particles. Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  14. E. Solano, R.L. de Matos Filho, N. Zagury, Deterministic bell states and measurement of the motional state of two trapped ions. Phys. Rev. A 59, R2539 (1999)

    Article  ADS  Google Scholar 

  15. G. Milburn, S. Schneider, D. James, Ion trap quantum computing with warm ions. Fortschr. Phys.: Prog. Phys. 48, 801 (2000)

    Article  ADS  Google Scholar 

  16. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenković, C. Langer, T. Rosenband et al., Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003)

    Article  ADS  Google Scholar 

  17. P.J. Lee, K.-A. Brickman, L. Deslauriers, P.C. Haljan, L.-M. Duan, C. Monroe, Phase control of trapped ion quantum gates. J. Opt. B: Quantum Semiclass. Opt. 7, S371 (2005). https://doi.org/10.1088/1464-4266/7/10/025

    Article  Google Scholar 

  18. J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried et al., High-fidelity universal gate set for be 9+ ion qubits. Phys. Rev. Lett. 117, 060505 (2016)

    Article  ADS  Google Scholar 

  19. C. Ballance, T. Harty, N. Linke, M. Sepiol, D. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016)

    Article  ADS  Google Scholar 

  20. C.R. Clark, H.N. Tinkey, B.C. Sawyer, A.M. Meier, K.A. Burkhardt, C.M. Seck, C.M. Shappert, N.D. Guise, C.E. Volin, S.D. Fallek et al., High-fidelity bell-state preparation with ca+ 40 optical qubits. Phys. Rev. Lett. 127, 130505 (2021)

    Article  ADS  Google Scholar 

  21. D. Kielpinski, C. Monroe, D. J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature (London) 417, 709 (2002) https://www.nature.com/articles/nature00784

  22. T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, I. L. Chuang, A quantum logic array microarchitecture: Scalable quantum data movement and computation, in booktitle 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05) (organization IEEE, 2005) pp. 12–pp

  23. C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 090502 (2008)

    Article  ADS  Google Scholar 

  24. C. Ospelkaus, U. Warring, Y. Colombe, K. Brown, J. Amini, D. Leibfried, D.J. Wineland, Microwave quantum logic gates for trapped ions. Nature 476, 181 (2011)

    Article  ADS  Google Scholar 

  25. F. Mintert, C. Wunderlich, Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  26. N. Timoney, I. Baumgart, M. Johanning, A. Varón, M.B. Plenio, A. Retzker, C. Wunderlich, Quantum gates and memory using microwave-dressed states. Nature 476, 185 (2011)

    Article  ADS  Google Scholar 

  27. A. Khromova, C. Piltz, B. Scharfenberger, T. Gloger, M. Johanning, A. Varón, C. Wunderlich, Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. Phys. Rev. Lett. 108, 220502 (2012)

    Article  ADS  Google Scholar 

  28. S. Weidt, J. Randall, S. Webster, K. Lake, A. Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker, W. Hensinger, Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett. 117, 220501 (2016)

    Article  ADS  Google Scholar 

  29. T. Harty, M. Sepiol, D. Allcock, C. Ballance, J. Tarlton, D. Lucas, High-fidelity trapped-ion quantum logic using near-field microwaves. Phys. Rev. Lett. 117, 140501 (2016)

    Article  ADS  Google Scholar 

  30. S. Ding, H. Loh, R. Hablutzel, M. Gao, G. Maslennikov, D. Matsukevich, Microwave control of trapped-ion motion assisted by a running optical lattice. Phys. Rev. Lett. 113, 073002 (2014)

    Article  ADS  Google Scholar 

  31. R. Srinivas, S.C. Burd, R.T. Sutherland, A.C. Wilson, D.J. Wineland, D. Leibfried, D.T. Allcock, D.H. Slichter, Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett. 122, 163201 (2019)

    Article  ADS  Google Scholar 

  32. R. Srinivas, S. Burd, H. Knaack, R. Sutherland, A. Kwiatkowski, S. Glancy, E. Knill, D. Wineland, D. Leibfried, A.C. Wilson et al., High-fidelity laser-free universal control of trapped ion qubits. Nature 597, 209 (2021)

    Article  ADS  Google Scholar 

  33. S.-L. Zhu, C. Monroe, L.-M. Duan, Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006)

    Article  ADS  Google Scholar 

  34. S.-L. Zhu, C. Monroe, L.-M. Duan, Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. EPL (Europhys. Lett.) 73, 485 (2006)

    Article  ADS  Google Scholar 

  35. G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan, Large-scale quantum computation in an anharmonic linear ion trap. EPL (Europhys. Lett.) 86, 60004 (2009)

    Article  ADS  Google Scholar 

  36. T. Choi, S. Debnath, T. Manning, C. Figgatt, Z.-X. Gong, L.-M. Duan, C. Monroe, Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Phys. Rev. Lett. 112, 190502 (2014)

    Article  ADS  Google Scholar 

  37. S. Debnath, N.M. Linke, C. Figgatt, K.A. Landsman, K. Wright, C. Monroe, Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63 (2016)

    Article  ADS  Google Scholar 

  38. A.M. Steane, G. Imreh, J.P. Home, D. Leibfried, Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions. New J. Phys. 16, 053049 (2014)

    Article  ADS  Google Scholar 

  39. T.J. Green, M.J. Biercuk, Phase-modulated decoupling and error suppression in qubit-oscillator systems. Phys. Rev. Lett. 114, 120502 (2015)

    Article  ADS  Google Scholar 

  40. A.R. Milne, C.L. Edmunds, C. Hempel, F. Roy, S. Mavadia, M.J. Biercuk, Phase-modulated entangling gates robust to static and time-varying errors. Phys. Rev. Appl. 13, 024022 (2020)

    Article  ADS  Google Scholar 

  41. C.D. Bentley, H. Ball, M.J. Biercuk, A.R. Carvalho, M.R. Hush, H.J. Slatyer, Numeric optimization for configurable, parallel, error-robust entangling gates in large ion registers. Adv. Quant. Technol. 3, 2000044 (2020)

    Article  Google Scholar 

  42. P.H. Leung, K.A. Landsman, C. Figgatt, N.M. Linke, C. Monroe, K.R. Brown, Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett. 120, 020501 (2018)

    Article  ADS  Google Scholar 

  43. P.H. Leung, K.R. Brown, Entangling an arbitrary pair of qubits in a long ion crystal. Phys. Rev. A 98, 032318 (2018)

    Article  ADS  Google Scholar 

  44. K.A. Landsman, Y. Wu, P.H. Leung, D. Zhu, N.M. Linke, K.R. Brown, L. Duan, C. Monroe, Two-qubit entangling gates within arbitrarily long chains of trapped ions. Phys. Rev. A 100, 022332 (2019)

    Article  ADS  Google Scholar 

  45. F. Haddadfarshi, F. Mintert, High fidelity quantum gates of trapped ions in the presence of motional heating. New J. Phys. 18, 123007 (2016)

    Article  ADS  Google Scholar 

  46. A.E. Webb, S.C. Webster, S. Collingbourne, D. Bretaud, A.M. Lawrence, S. Weidt, F. Mintert, W.K. Hensinger, Resilient entangling gates for trapped ions. Phys. Rev. Lett. 121, 180501 (2018)

    Article  ADS  Google Scholar 

  47. Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, R. Ozeri, Robust entanglement gates for trapped-ion qubits. Phys. Rev. Lett. 121, 180502 (2018)

    Article  ADS  Google Scholar 

  48. Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, L. Peleg, L. Gazit, R. Ozeri, A. Stern, Theory of robust multiqubit nonadiabatic gates for trapped ions. Phys. Rev. A 101, 032330 (2020)

    Article  ADS  Google Scholar 

  49. Y. Lu, S. Zhang, K. Zhang, W. Chen, Y. Shen, J. Zhang, J.-N. Zhang, K. Kim, Global entangling gates on arbitrary ion qubits. Nature 572, 363 (2019)

    Article  ADS  Google Scholar 

  50. C. Figgatt, A. Ostrander, N.M. Linke, K.A. Landsman, D. Zhu, D. Maslov, C. Monroe, Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368 (2019)

    Article  ADS  Google Scholar 

  51. K. Wang, J.-F. Yu, P. Wang, C. Luan, J.-N. Zhang, K. Kim, Fast multi-qubit global-entangling gates without individual addressing of trapped ions. Quantum Sci. Technol. 7, 044005 (2022)

    Article  ADS  Google Scholar 

  52. C. Langer, R. Ozeri, J.D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. Blakestad, J. Britton, D. Hume, W.M. Itano et al., Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)

    Article  ADS  Google Scholar 

  53. T. Harty, D. Allcock, C.J. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, D. Lucas, High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014)

    Article  ADS  Google Scholar 

  54. Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan, D. Yum, K. Kim, Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photonics 11, 646 (2017) https://www.nature.com/articles/s41566-017-0007-1

    Article  ADS  Google Scholar 

  55. P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, K. Kim, Single ion qubit with estimated coherence time exceeding one hour. Nat. Commun. 12, 1 (2021) https://www.nature.com/articles/s41467-020-20330-w

    Google Scholar 

  56. A. Myerson, D. Szwer, S. Webster, D. Allcock, M. Curtis, G. Imreh, J. Sherman, D. Stacey, A. Steane, D. Lucas, High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett. 100, 200502 (2008)

    Article  ADS  Google Scholar 

  57. S.L. Todaro, V. Verma, K.C. McCormick, D. Allcock, R. Mirin, D.J. Wineland, S.W. Nam, A.C. Wilson, D. Leibfried, D. Slichter, State readout of a trapped ion qubit using a trap-integrated superconducting photon detector. Phys. Rev. Lett. 126, 010501 (2021)

    Article  ADS  Google Scholar 

  58. T. Ruster, C.T. Schmiegelow, H. Kaufmann, C. Warschburger, F. Schmidt-Kaler, U.G. Poschinger, A long-lived Zeeman trapped-ion qubit. Appl. Phys. B 122, 1 (2016)

    Article  Google Scholar 

  59. B.B. Blinov, D. Leibfried, C. Monroe, D.J. Wineland, Quantum computing with trapped ion hyperfine qubits. Quantum Inf. Process. 3, 45 (2004)

    Article  MATH  Google Scholar 

  60. J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)

    Article  Google Scholar 

  61. S. Olmschenk, K.C. Younge, D.L. Moehring, D.N. Matsukevich, P. Maunz, C. Monroe, Manipulation and detection of a trapped yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007)

    Article  ADS  Google Scholar 

  62. A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. Poschinger, C. Hempel, J. Home et al., Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 041061 (2017)

    Google Scholar 

  63. C.M. Shappert, J.T. Merrill, K. Brown, J.M. Amini, C. Volin, S.C. Doret, H. Hayden, C. Pai, A. Harter, Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation. New J. Phys. 15, 083053 (2013)

    Article  ADS  Google Scholar 

  64. J. Randall, S. Weidt, E. Standing, K. Lake, S. Webster, D. Murgia, T. Navickas, K. Roth, W. Hensinger, Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions. Phys. Rev. A 91, 012322 (2015)

    Article  ADS  Google Scholar 

  65. D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639 (1978)

    Article  ADS  Google Scholar 

  66. W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233 (1978)

    Article  ADS  Google Scholar 

  67. C. Monroe, D. Meekhof, B. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  Google Scholar 

  68. C. Roos, T. Zeiger, H. Rohde, H. Nägerl, J. Eschner, D. Leibfried, F. Schmidt-Kaler, R. Blatt, Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713 (1999)

    Article  ADS  Google Scholar 

  69. J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the doppler limit by polarization gradients: simple theoretical models. JOSA B 6, 2023 (1989)

    Article  ADS  Google Scholar 

  70. S. Ejtemaee, P. Haljan, 3D sisyphus cooling of trapped ions. Phys. Rev. Lett. 119, 043001 (2017)

    Article  ADS  Google Scholar 

  71. G. Morigi, J. Eschner, C.H. Keitel, Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458 (2000)

    Article  ADS  Google Scholar 

  72. C. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, R. Blatt, Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547 (2000)

    Article  ADS  Google Scholar 

  73. Y. Lin, J.P. Gaebler, T.R. Tan, R. Bowler, J.D. Jost, D. Leibfried, D.J. Wineland, Sympathetic electromagnetically-induced-transparency laser cooling of motional modes in an ion chain. Phys. Rev. Lett. 110, 153002 (2013)

    Article  ADS  Google Scholar 

  74. R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B.P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, C.F. Roos, Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A 93, 053401 (2016)

    Article  ADS  Google Scholar 

  75. N. Scharnhorst, J. Cerrillo, J. Kramer, I.D. Leroux, J.B. Wübbena, A. Retzker, P.O. Schmidt, Experimental and theoretical investigation of a multimode cooling scheme using multiple electromagnetically-induced-transparency resonances. Phys. Rev. A 98, 023424 (2018)

    Article  ADS  Google Scholar 

  76. E. Jordan, K.A. Gilmore, A. Shankar, A. Safavi-Naini, J.G. Bohnet, M.J. Holland, J.J. Bollinger, Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions. Phys. Rev. Lett. 122, 053603 (2019)

    Article  ADS  Google Scholar 

  77. L. Feng, W. Tan, A. De, A. Menon, A. Chu, G. Pagano, C. Monroe, Efficient ground-state cooling of large trapped-ion chains with an electromagnetically-induced-transparency tripod scheme. Phys. Rev. Lett. 125, 053001 (2020)

    Article  ADS  Google Scholar 

  78. M. Qiao, Y. Wang, Z. Cai, B. Du, P. Wang, C. Luan, W. Chen, H.-R. Noh, K. Kim, Double-electromagnetically-induced-transparency ground-state cooling of stationary two-dimensional ion crystals. Phys. Rev. Lett. 126, 023604 (2021)

    Article  ADS  Google Scholar 

  79. D. Wineland, J. Bergquist, W.M. Itano, R. Drullinger, Double-resonance and optical-pumping experiments on electromagnetically confined, laser-cooled ions. Optics Lett. 5, 245 (1980)

    Article  ADS  Google Scholar 

  80. J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland, Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699 (1986)

    Article  ADS  Google Scholar 

  81. W. Nagourney, J. Sandberg, H. Dehmelt, Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797 (1986)

    Article  ADS  Google Scholar 

  82. L.A. Zhukas, P. Svihra, A. Nomerotski, B.B. Blinov, High-fidelity simultaneous detection of a trapped-ion qubit register. Phys. Rev. A 103, 062614 (2021)

    Article  ADS  Google Scholar 

  83. J.E. Christensen, D. Hucul, W.C. Campbell, E.R. Hudson, High-fidelity manipulation of a qubit enabled by a manufactured nucleus. NPJ Quantum Inf. 6, 1 (2020)

    Article  Google Scholar 

  84. S. Crain, C. Cahall, G. Vrijsen, E.E. Wollman, M.D. Shaw, V.B. Verma, S.W. Nam, J. Kim, High-speed low-crosstalk detection of a 171yb+ qubit using superconducting nanowire single photon detectors. Comm. Phys. 2, 1 (2019)

    Article  Google Scholar 

  85. W. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. Matsukevich, P. Maunz, C. Monroe, Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105, 090502 (2010)

    Article  ADS  Google Scholar 

  86. W.-X. Guo, Y.-K. Wu, Y.-Y. Huang, L. Feng, C.-X. Huang, H.-X. Yang, J.-Y. Ma, L. Yao, Z.-C. Zhou, L.-M. Duan, Picosecond ion-qubit manipulation and spin-phonon entanglement with resonant laser pulses. Phys. Rev. A 106, 022608 (2022)

    Article  ADS  Google Scholar 

  87. J. Mizrahi, C. Senko, B. Neyenhuis, K. Johnson, W. Campbell, C. Conover, C. Monroe, Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett. 110, 203001 (2013)

    Article  ADS  Google Scholar 

  88. J. Wong-Campos, S. Moses, K. Johnson, C. Monroe, Demonstration of two-atom entanglement with ultrafast optical pulses. Phys. Rev. Lett. 119, 230501 (2017)

    Article  ADS  Google Scholar 

  89. R. Ozeri, W.M. Itano, R. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin et al., Errors in trapped-ion quantum gates due to spontaneous photon scattering. Phys. Rev. A 75, 042329 (2007)

    Article  ADS  Google Scholar 

  90. P.C. Haljan, K.-A. Brickman, L. Deslauriers, P.J. Lee, C. Monroe, Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005)

    Article  ADS  Google Scholar 

  91. J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Complete methods set for scalable ion trap quantum information processing. Science 325, 1227 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. S. Zhang, Y. Lu, K. Zhang, W. Chen, Y. Li, J.-N. Zhang, K. Kim, Error-mitigated quantum gates exceeding phys. fidelities in a trapped-ion system. Nat. Commun. 11, 1 (2020)

    ADS  Google Scholar 

  93. C.F. Roos, Ion trap quantum gates with amplitude-modulated laser beams. New J. Phys. 10, 013002 (2008)

    Article  Google Scholar 

  94. T. Manovitz, Y. Shapira, L. Gazit, N. Akerman, R. Ozeri, Trapped-ion quantum computer with robust entangling gates and quantum coherent feedback. PRX Quantum 3, 010347 (2022)

    Article  ADS  Google Scholar 

  95. B.C. Sawyer, K.R. Brown, Wavelength-insensitive, multispecies entangling gate for group-2 atomic ions. Phys. Rev. A 103, 022427 (2021). https://doi.org/10.1103/PhysRevA.103.022427

    Article  ADS  Google Scholar 

  96. V. Schäfer, C. Ballance, K. Thirumalai, L. Stephenson, T. Ballance, A. Steane, D. Lucas, Fast quantum logic gates with trapped-ion qubits. Nature 555, 75 (2018)

    Article  ADS  Google Scholar 

  97. C. R. Clark, H. N. Tinkey, B. C. Sawyer, A. M. Meier, K. A. Burkhardt, C. M. Seck, C. M. Shappert, N. D. Guise, C. E. Volin, S. D. Fallek, H. T. Hayden, W. G. Rellergert, K. R. Brown, High-Fidelity Bell-State Preparation with \$40 \$Ca\$ \$ Optical Qubits, Phys. Rev. Lett. 127, 130505 ( 2021b), https://doi.org/10.1103/PhysRevLett.127.130505. arXiv:2105.05828 [physics, physics:quant-ph]

  98. K. Kim, C. Roos, L. Aolita, H. Häffner, V. Nebendahl, R. Blatt, Geometric phase gate on an optical transition for ion trap quantum computation. Phys. Rev. A 77, 050303 (2008)

    Article  ADS  Google Scholar 

  99. L. Aolita, K. Kim, J. Benhelm, C. F. Roos, H. Häffner, High-fidelity ion-trap quantum computing with hyperfine clock states. Phys. Rev. A 76 (2007)

  100. T. Monz, K. Kim, A. Villar, P. Schindler, M. Chwalla, M. Riebe, C.F. Roos, H. Häffner, W. Hänsel, M. Hennrich et al., Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys. Rev. Lett. 103, 200503 (2009)

    Article  ADS  Google Scholar 

  101. C. Baldwin, B. Bjork, M. Foss-Feig, J. Gaebler, D. Hayes, M. Kokish, C. Langer, J. Sedlacek, D. Stack, G. Vittorini, High-fidelity light-shift gate for clock-state qubits. Phys. Rev. A 103, 012603 (2021)

    Article  ADS  Google Scholar 

  102. D.J. Gorman, B. Hemmerling, E. Megidish, S.A. Moeller, P. Schindler, M. Sarovar, H. Haeffner, Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator. Phys. Rev. X 8, 011038 (2018)

    Google Scholar 

  103. J.P. Home, Quantum science and metrology with mixed-species ion chains. Adv. At. Mol. Opt. Phys. 62, 231 (2013) https://www.sciencedirect.com/science/article/pii/B9780124080904000049

    Article  ADS  Google Scholar 

  104. T.R. Tan, J.P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, D.J. Wineland, Multi-element logic gates for trapped-ion qubits. Nature 528, 380 (2015)

    Article  ADS  Google Scholar 

  105. C. Ballance, V. Schäfer, J. P. Home, D. Szwer, S. C. Webster, D. Allcock, N. M. Linke, T. Harty, D. Aude Craik, D. N. Stacey, et al., Hybrid quantum logic and a test of bell’s inequality using two different atomic isotopes. Nature (London) 528, 384 (2015). https://www.nature.com/articles/nature16184

  106. I.V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, C. Monroe, Multispecies trapped-ion node for quantum networking. Phys. Rev. Lett. 118, 250502 (2017). https://doi.org/10.1103/PhysRevLett.118.250502

    Article  ADS  Google Scholar 

  107. V. Negnevitsky, M. Marinelli, K. K. Mehta, H.-Y. Lo, C. Flühmann, J. P. Home, Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register, Nature (London) 563, 527 (2018) https://www.nature.com/articles/s41586-018-0668-z

  108. C. Bruzewicz, R. McConnell, J. Stuart, J. Sage, J. Chiaverini, Dual-species, multi-qubit logic primitives for ca+/sr+ trapped-ion crystals. NPJ Quantum Inf. 5, 1 (2019)

    Article  Google Scholar 

  109. A.C. Hughes, V.M. Schäfer, K. Thirumalai, D.P. Nadlinger, S.R. Woodrow, D.M. Lucas, C.J. Ballance, Benchmarking a high-fidelity mixed-species entangling gate. Phys. Rev. Lett. 125, 080504 (2020). https://doi.org/10.1103/PhysRevLett.125.080504. arXiv:2004.08162 [quant-ph]

  110. P. Wang, J. Zhang, C.-Y. Luan, M. Um, Y. Wang, M. Qiao, T. Xie, J.-N. Zhang, A. Cabello, K. Kim, Significant loophole-free test of kochen-specker contextuality using two species of atomic ions. Sci. Adv. 8, eabk1660 (2022)

    Article  Google Scholar 

  111. S. Wölk, C. Wunderlich, Quantum dynamics of trapped ions in a dynamic field gradient using dressed states. New J. Phys. 19, 083021 (2017)

    Article  ADS  Google Scholar 

  112. M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, C. Wunderlich, Individual addressing of trapped ions and coupling of motional and spin states using RF radiation. Phys. Rev. Lett. 102, 073004 (2009)

    Article  ADS  Google Scholar 

  113. K. Lake, S. Weidt, J. Randall, E. Standing, S. Webster, W. Hensinger, Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation. Phys. Rev. A 91, 012319 (2015)

    Article  ADS  Google Scholar 

  114. J. Chiaverini, W. Lybarger Jr., Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77, 022324 (2008)

    Article  ADS  Google Scholar 

  115. B. Lekitsch, S. Weidt, A.G. Fowler, K. Mølmer, S.J. Devitt, C. Wunderlich, W.K. Hensinger, Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017)

    Article  ADS  Google Scholar 

  116. J. Welzel, F. Stopp, F. Schmidt-Kaler, Spin and motion dynamics with zigzag ion crystals in transverse magnetic gradients. J. Phys. B: Atom. Mole. Opt. Phys. 52, 025301 (2018)

    Article  ADS  Google Scholar 

  117. S.X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, I.L. Chuang, Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap. Appl. Phys. Lett. 94, 094103 (2009)

    Article  ADS  Google Scholar 

  118. C. Piltz, T. Sriarunothai, A. Varón, C. Wunderlich, A trapped-ion-based quantum byte with 10–5 next-neighbour cross-talk. Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  119. S. Webster, S. Weidt, K. Lake, J. McLoughlin, W. Hensinger, Simple manipulation of a microwave dressed-state ion qubit. Phys. Rev. Lett. 111, 140501 (2013)

    Article  ADS  Google Scholar 

  120. I. Cohen, S. Weidt, W.K. Hensinger, A. Retzker, Multi-qubit gate with trapped ions for microwave and laser-based implementation. New J. Phys. 17, 043008 (2015)

    Article  ADS  MATH  Google Scholar 

  121. S. Weidt, J. Randall, S. Webster, E. Standing, A. Rodriguez, A. Webb, B. Lekitsch, W. Hensinger, Ground-state cooling of a trapped ion using long-wavelength radiation. Phys. Rev. Lett. 115, 013002 (2015)

    Article  ADS  Google Scholar 

  122. U. Warring, C. Ospelkaus, Y. Colombe, R. Jördens, D. Leibfried, D.J. Wineland, Individual-ion addressing with microwave field gradients. Phys. Rev. Lett. 110, 173002 (2013)

    Article  ADS  Google Scholar 

  123. U. Warring, C. Ospelkaus, Y. Colombe, K.R. Brown, J. Amini, M. Carsjens, D. Leibfried, D.J. Wineland, Techniques for microwave near-field quantum control of trapped ions. Phys. Rev. A 87, 013437 (2013)

    Article  ADS  Google Scholar 

  124. G. Zarantonello, H. Hahn, J. Morgner, M. Schulte, A. Bautista-Salvador, R. Werner, K. Hammerer, C. Ospelkaus, Robust and resource-efficient microwave near-field entangling be+ 9 gate. Phys. Rev. Lett. 123, 260503 (2019)

    Article  ADS  Google Scholar 

  125. H. Hahn, G. Zarantonello, M. Schulte, A. Bautista-Salvador, K. Hammerer, C. Ospelkaus, Integrated 9be+ multi-qubit gate device for the ion-trap quantum computer. NPJ Quantum Inf. 5, 1 (2019)

    Article  Google Scholar 

  126. R. Sutherland, R. Srinivas, S.C. Burd, H.M. Knaack, A.C. Wilson, D.J. Wineland, D. Leibfried, D. Allcock, D. Slichter, S. Libby, Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. Phys. Rev. A 101, 042334 (2020)

    Article  ADS  Google Scholar 

  127. J.J. García-Ripoll, P. Zoller, J.I. Cirac, Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  128. L.-M. Duan, Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett. 93, 100502 (2004)

    Article  ADS  Google Scholar 

  129. R.L. Taylor, C.D. Bentley, J.S. Pedernales, L. Lamata, E. Solano, A.R. Carvalho, J.J. Hope, A study on fast gates for large-scale quantum simulation with trapped ions. Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  130. E. Torrontegui, D. Heinrich, M. Hussain, R. Blatt, J.J. García-Ripoll, Ultra-fast two-qubit ion gate using sequences of resonant pulses. New J. Phys. 22, 103024 (2020)

    Article  ADS  Google Scholar 

  131. K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, C. Monroe, Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009)

    Article  ADS  Google Scholar 

  132. G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C.F. Roos, R. Blatt, Deterministic entanglement of ions in thermal states of motion. New J. Phys. 11, 023002 (2009)

    Article  ADS  Google Scholar 

  133. D. Hayes, S.M. Clark, S. Debnath, D. Hucul, I.V. Inlek, K.W. Lee, Q. Quraishi, C. Monroe, Coherent error suppression in multiqubit entangling gates. Phys. Rev. Lett. 109, 020503 (2012)

    Article  ADS  Google Scholar 

  134. T. Manovitz, A. Rotem, R. Shaniv, I. Cohen, Y. Shapira, N. Akerman, A. Retzker, R. Ozeri, Fast dynamical decoupling of the mølmer-sørensen entangling gate. Phys. Rev. Lett. 119, 220505 (2017)

    Article  ADS  Google Scholar 

  135. Y. Wang, S. Crain, C. Fang, B. Zhang, S. Huang, Q. Liang, P.H. Leung, K.R. Brown, J. Kim, High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125, 150505 (2020)

    Article  ADS  Google Scholar 

  136. M. Kang, Q. Liang, B. Zhang, S. Huang, Y. Wang, C. Fang, J. Kim, K.R. Brown, Batch optimization of frequency-modulated pulses for robust two-qubit gates in ion chains. Phys. Rev. Appl. 16, 024039 (2021)

    Article  ADS  Google Scholar 

  137. N. Grzesiak, R. Blümel, K. Wright, K.M. Beck, N.C. Pisenti, M. Li, V. Chaplin, J.M. Amini, S. Debnath, J.-S. Chen et al., Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer. Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  138. T. R. Tan, J. P. Gaebler, R. Bowler, Y. Lin, J. D. Jost, D. Leibfried, D.J. Wineland, Demonstration of a dressed-state phase gate for trapped ions. Phys. Rev. Lett. 110, 263002 (2018). https://doi.org/10.1103/PhysRevLett.110.263002arXiv:1301.3786 [physics, physics:quant-ph]

  139. C. Baldwin, B. Bjork, J. Gaebler, D. Hayes, D. Stack, Subspace benchmarking high-fidelity entangling operations with trapped ions. Phys. Rev. Res. 2, 013317 (2020)

    Article  Google Scholar 

  140. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer et al., Creation of a six-atom ‘schrödinger cat’state. Nature 438, 639 (2005)

    Article  ADS  Google Scholar 

  141. T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  142. D. Yum, T. Choi, Progress of quantum entanglement in a trapped-ion based quantum computer. Curr. Appl. Phys. 41, 163 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the innovation Program for Quantum Science and Technology under Grants No. 2021ZD0301602, and the National Natural Science Foundation of China under Grants No. 92065205, and No. 11974200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kihwan Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Luan, C.Y., Ou, L. et al. Entangling gates for trapped-ion quantum computation and quantum simulation. J. Korean Phys. Soc. 82, 882–900 (2023). https://doi.org/10.1007/s40042-023-00772-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00772-3

Keywords

Navigation