Skip to main content
Log in

Benzodithiophene derivative 2D spacer as a defect passivation material in metal halide perovskite solar cells

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 09 August 2023

This article has been updated

Abstract

Defect passivation is an efficient strategy for improving the performance of perovskite solar cells (PSCs). In this study, we introduced a benzodithiophene-based 2D spacer with a short alkyl chain (BDT-C2) into a perovskite film for defect passivation. The introduction of BDT-C2 did not exhibit the 2D perovskite structure, but an optimized amount (0.01 wt%) induced vertically oriented (110) planes of perovskite film. However, when excess BDT-C2 was added to the perovskite film, the orientation collapsed. The nanostructure of the film was correlated with the device performance. The (110) plane was mostly arranged in the vertical orientation, and the device performance was best under the optimal conditions. Despite the enhancement of the device performance, the grain size of the perovskite was almost unaltered with the addition of BDT-C2. By measuring the light intensity-dependent Voc and Jsc, we confirmed that there was reduced charge recombination owing to defect passivation under the optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. J.C. Blancon, J. Even, C.C. Stoumpos, M.G. Kanatzidis, A.D. Mohite, Semiconductor physics of organic-inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020)

    Article  ADS  Google Scholar 

  2. X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V.L. Colvin, W.W. Yu, Y. Zhang, Ruddlesden-popper perovskites: synthesis and optical properties for optoelectronic applications. Adv. Sci. (Weinh) 6, 1900941 (2019)

    Article  Google Scholar 

  3. F. Zhang, H. Lu, J. Tong, J.J. Berry, M.C. Beard, K. Zhu, Advances in two-dimensional organic–inorganic hybrid perovskites. Energy Environ. Sci. 13, 1154–1186 (2020)

    Article  Google Scholar 

  4. R.K. Misra, B.E. Cohen, L. Iagher, L. Etgar, Low-dimensional organic-inorganic halide perovskite: structure, properties, and applications. Chemsuschem 10, 3712–3721 (2017)

    Article  Google Scholar 

  5. A.H. Slavney, R.W. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, H.I. Karunadasa, Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorg. Chem. 56, 46–55 (2017)

    Article  Google Scholar 

  6. S. Hong, I.H. Cho, S.H. Lee, H.J. Kim, Separate observation of surface passivation and linking effects of oleylamine alkylamine ligands on metal-halide perovskite films. Org. Electron. 114, 106731 (2023)

    Article  Google Scholar 

  7. X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A.K. Johnston, N. Wei, M.N. Hedhili, M. Wei, A.Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T.D. Anthopoulos, Y. Han, Z.-H. Lu, O.F. Mohammed, F. Gao, E.H. Sargent, O.M. Bakr, Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020)

    Article  ADS  Google Scholar 

  8. A.A. Nakita, K. Noel, †S.D. Stranks, †E.S. Parrott, †V.M. Burlakov, ‡A.H.J.S. Alain Goriely, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 8, 7 (2014)

    Google Scholar 

  9. T.Y. Wen, S. Yang, P.F. Liu, L.J. Tang, H.W. Qiao, X. Chen, X.H. Yang, Y. Hou, H.G. Yang, Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8, 1703143 (2018)

    Article  Google Scholar 

  10. Y. Liu, S. Akin, L. Pan, R. Uchida, N. Aarrora, J.V. Milic, A. Hinderhofer, F. Schreiber, A.R. Uhl, S.M. Zakeeruddin, A. Hagfeldt, M.I Dar, M. Grätzel, Ultrahydrophobic 3D 2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019)

    Article  ADS  Google Scholar 

  11. Y. Gao, Z. Wei, P. Yoo, E. Shi, M. Zeller, C. Zhu, P. Liao, L. Dou, Highly stable lead-free perovskite field-effect transistors incorporating linear pi-conjugated organic ligands. J. Am. Chem. Soc. 141, 15577–15585 (2019)

    Article  Google Scholar 

  12. F. Yang, P. Zhang, M.A. Kamarudin, G. Kapil, T. Ma, S. Hayase, Addition effect of pyreneammonium iodide to methylammonium lead halide perovskite-2D/3D heterostructured perovskite with enhanced stability. Adv. Funct. Mater. 28, 1804856 (2018)

    Article  Google Scholar 

  13. Y. Dong, D. Lu, Z. Xu, H. Lai, Y. Liu, 2-thiopheneformamidinium-based 2D ruddlesden-popper perovskite solar cells with efficiency of 16.72% and negligible hysteresis. Adv. Energy Mater. 10, 2000694 (2020)

    Article  Google Scholar 

  14. W.T.M. Van Gompel, R. Herckens, K. Van Hecke, B. Ruttens, J. D’Haen, L. Lutsen, D. Vanderzande, Towards 2D layered hybrid perovskites with enhanced functionality: introducing charge-transfer complexes via self-assembly. Chem. Commun. (Camb) 55, 2481–2484 (2019)

    Article  Google Scholar 

  15. D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji, Y. Liu, Thiophene-based two-dimensional dion-jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142, 11114–11122 (2020)

    Article  Google Scholar 

  16. W.T.M. Van Gompel, R. Herckens, K. Van Hecke, B. Ruttens, J. D’Haen, L. Lutsen, D. Vanderzande, Low-dimensional hybrid perovskites containing an organic cation with an extended conjugated system: tuning the excitonic absorption features. ChemNanoMat 5, 323–327 (2019)

    Article  Google Scholar 

  17. H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, J. Hou, Molecular design of benzodithiophene-based organic photovoltaic materials. Chem Rev 116, 7397–7457 (2016)

    Article  Google Scholar 

  18. X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D.-M. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, S. Liu, Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10, 2095–2102 (2017)

    Article  Google Scholar 

  19. C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli, J.I. Jang, J.T. Hupp, M.G. Kanatzidis, Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016)

    Article  Google Scholar 

  20. T. Niu, J. Lu, M.-C. Tang, D. Barrit, D.-M. Smilgies, Z. Yang, J. Li, Y. Fan, T. Luo, I. McCulloch, A. Amassian, S. Liu, K. Zhao, High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy Environ. Sci. 11, 3358–3366 (2018)

    Article  Google Scholar 

  21. J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R.H. Friend, H. Yang, T.W. Lee, Efficient visible quasi-2D perovskite light-emitting diodes. Adv Mater 28, 7515–7520 (2016)

    Article  Google Scholar 

  22. I.H. Cho, H.J. Kim, Thin film characterization via synchrotron X-ray experiments: XRR-TXRF, GIWAXS, 3D RSM. Appl. Sci. Converg. Technol. 31, 128–132 (2022)

    Article  Google Scholar 

  23. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  ADS  Google Scholar 

  24. Z.L. Feng Gao, J. Wang, A. Rao, I.A. Howard, A. Abrusci, S. Massip, A.N.C.G. Christopher, R. McNeill, Trap-induced losses in hybrid photovoltaics. ACS Nano 8, 9 (2014)

    Google Scholar 

  25. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, J.C. Hummelen, Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. Adv. Func. Mater. 14, 38–44 (2004)

    Article  Google Scholar 

  26. S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207 (2010)

    Article  ADS  Google Scholar 

  27. K.W. Kemp, A.J. Labelle, S.M. Thon, A.H. Ip, I.J. Kramer, S. Hoogland, E.H. Sargent, Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv. Energy Mater. 3, 917–922 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by 2021 BK21 FOUR Program of Pusan National University. This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2021R1A2C2010179), and the Korea Electric Power Corporation (R21EA07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Jung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Lee, S.H., Lee, K. et al. Benzodithiophene derivative 2D spacer as a defect passivation material in metal halide perovskite solar cells. J. Korean Phys. Soc. 83, 269–275 (2023). https://doi.org/10.1007/s40042-023-00759-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00759-0

Keywords

Navigation