Skip to main content
Log in

H-mode experimental integrated modeling of impurity injection to control divertor heat flux on HL-2A

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Based on the METIS integrated modeling platform, combined with the experimental data of the #34512 shot detached divertor operation on the HL-2A, this paper selects suitable physical models, and compares and analyzes the integrated modeling results with the experimental results. The modeling results are in good agreement with the experimental results. On this basis, the reason for the decrease of the peak heat flux on the divertor targets is investigated using the METIS simulator. The results show that the two factors of entering the H-mode and the radiation enhancement effect generated by impurity injection work together to reduce the heat flow on the targets. Finally, the different effects of N, Ar and Ne impurity gases on the heat flux reduction of the targets are simulated under the condition that the plasma line-average effective charge (Zeff) is kept unchanged. The results show that N and Ar are both better than Ne in controlling the heat flow on the targets, and N has the best compatibility in the core, which can not only reduce the boundary heat flow but also maintain the core confinement performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Li et al., Nucl. Fusion 61, 066013 (2021). https://doi.org/10.1088/1741-4326/abf418

    Article  ADS  Google Scholar 

  2. R.A. Pitts et al., Nucl. Mater. Energy 20, 100696 (2019). https://doi.org/10.1016/j.nme.2019.100696

    Article  ADS  Google Scholar 

  3. V.A. Soukhanovskii, Plasma Phys. Control. Fusion 59, 064005 (2017). https://doi.org/10.1088/1361-6587/aa6959

    Article  ADS  Google Scholar 

  4. D.M. Yao et al., Phys. Scr. 2016, 014003 (2016). https://doi.org/10.1088/0031-8949/2015/T167/014003

    Article  Google Scholar 

  5. H.Y. Guo et al., Nucl. Fusion 54, 013002 (2014). https://doi.org/10.1088/0029-5515/54/1/013002

    Article  ADS  Google Scholar 

  6. A. Kallenbach et al., Nucl. Fusion 61, 016002 (2021). https://doi.org/10.1088/1741-4326/abbba0

    Article  Google Scholar 

  7. A.E. Jaervinen et al., Nucl. Fusion 56, 046012 (2016). https://doi.org/10.1088/0029-5515/56/4/046012

    Article  ADS  Google Scholar 

  8. H. Urano et al., Nucl. Fusion 55, 033010 (2015). https://doi.org/10.1088/0029-5515/55/3/033010

    Article  ADS  Google Scholar 

  9. C. Giroud et al., Nucl. Fusion 53, 113025 (2013). https://doi.org/10.1088/0029-5515/53/11/113025

    Article  ADS  Google Scholar 

  10. N. Asakura et al., Nucl. Fusion 49, 115010 (2009). https://doi.org/10.1088/0029-5515/49/11/115010

    Article  ADS  Google Scholar 

  11. L. Wang et al., Nucl. Fusion 59, 086036 (2019). https://doi.org/10.1088/1741-4326/ab1ed4

    Article  ADS  Google Scholar 

  12. E.A. Lazarus et al., Nucl. Fusion 25, 135 (1985). https://doi.org/10.1088/0029-5515/25/2/002

    Article  Google Scholar 

  13. G.L. Jackson et al., J. Nucl. Mater. 266–269, 380 (1999). https://doi.org/10.1016/s0022-3115(98)00653-9

    Article  ADS  Google Scholar 

  14. L.C. Ingesson et al., J. Nucl. Mater. 313–316, 1173 (2003). https://doi.org/10.1016/s0022-3115(02)01518-0

    Article  ADS  Google Scholar 

  15. G.F. Matthews et al., Nucl. Fusion 39, 19 (1999). https://doi.org/10.1088/0029-5515/39/1/302

    Article  ADS  Google Scholar 

  16. M.L. Reinke, J.W. Hughes, A. Loarte, D. Brunner, I.H. Hutchinson, B. LaBombard, J. Payne, J.L. Terry, J. Nucl. Mater. 415, S340 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.055

    Article  ADS  Google Scholar 

  17. J.B. Chen et al., Phys. Plasmas 26, 052501 (2019). https://doi.org/10.1063/1.5085892

    Article  ADS  Google Scholar 

  18. L.W. Yan, W.Y. Hong, J. Cheng et al., J. Nucl. Mater. 390–391, 246 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.075

    Article  ADS  Google Scholar 

  19. O. Meneghini et al., Nucl. Fusion 55, 083008 (2015). https://doi.org/10.1088/0029-5515/55/8/083008

    Article  ADS  Google Scholar 

  20. Y. Zhong et al., Nucl. Fusion 62, 126027 (2022). https://doi.org/10.1088/1741-4326/ac948a

    Article  ADS  Google Scholar 

  21. J.F. Artaud et al., Nucl. Fusion 50, 043001 (2010). https://doi.org/10.1088/0029-5515/50/4/043001

    Article  ADS  Google Scholar 

  22. J.F. Artaud et al., Nucl. Fusion 58, 105001 (2018). https://doi.org/10.1088/1741-4326/aad5b1

    Article  ADS  Google Scholar 

  23. D. Moreau et al., Nucl. Fusion 55, 063011 (2015). https://doi.org/10.1088/0029-5515/55/6/063011

    Article  ADS  Google Scholar 

  24. L. Xue et al., Nucl. Fusion 60, 016016 (2020). https://doi.org/10.1088/1741-4326/ab4c65

    Article  ADS  Google Scholar 

  25. Y.J. Zhong, Q.H. Huang, X.Y. Gong, Q.Y. Tan, P.W. Zheng, J. Wang, Y.F. Shi, Fusion Eng. Des. 172, 112912 (2021). https://doi.org/10.1016/j.fusengdes.2021.112912

    Article  Google Scholar 

  26. L. Liu et al., Zeff measurement in Ohmic, L- and H-mode plasmas on HL-2A tokamak IEEE Trans. Plasma Sci. 48, 2790 (2020). https://doi.org/10.1109/TPS.2020.3010560

    Article  Google Scholar 

  27. C. Angioni et al., Nucl. Fusion 47, 1326 (2007). https://doi.org/10.1088/0029-5515/47/9/033

    Article  ADS  Google Scholar 

  28. M. Erba et al., Plasma Phys. Control. Fusion 39, 261 (1997). https://doi.org/10.1088/0741-3335/39/2/004

    Article  ADS  Google Scholar 

  29. M. Erba et al., Nucl. Fusion 38, 1013 (1998). https://doi.org/10.1088/0029-5515/38/7/305

    Article  ADS  Google Scholar 

  30. ITPA H-mode Power Threshold Database Working Group presented by T Takizuka, Plasma Phys. Control. Fusion 46, A227 (2004). https://doi.org/10.1088/0741-3335/46/5A/024

    Article  Google Scholar 

  31. A.S. Kukushkin et al., Nucl. Fusion 43, 716 (2003). https://doi.org/10.1088/0029-5515/43/8/312

    Article  ADS  Google Scholar 

  32. G.-F. Matthews et al., J. Nucl. Mater. 241–3, 450–458 (1997). https://doi.org/10.1016/S0022-3115(97)80080-3

    Article  ADS  Google Scholar 

  33. G.-F. Matthews et al., Nucl. Fusion 39, 27 (1999). https://doi.org/10.1088/0029-5515/39/1/302

    Article  ADS  Google Scholar 

  34. W.L. Zhong et al., Plasma Phys. Control. Fusion 58, 065001 (2016). https://doi.org/10.1088/0741-3335/58/6/065001

    Article  ADS  Google Scholar 

  35. W.W. Xiao et al., Nucl. Fusion 52, 114027 (2012). https://doi.org/10.1088/0029-5515/52/11/114027

    Article  ADS  Google Scholar 

  36. X.R. Duan et al., Nucl. Fusion 57, 102013 (2017). https://doi.org/10.1088/1741-4326/aa6a72

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2018YFE0303102), the National Natural Science Foundation of China (Grant No. 12075114), the Construct Program of Fusion, and the Plasma Physics Innovation Team in Hunan Province (Grant No. NHXTD03), the Natural Science Foundation of Hunan Province (Grant No. 2021JJ50090, 2021JJ50095), and the Construct Program of the Key Discipline in Hunan Province. We appreciate the Sino-French Fusion Energy Center (SIFFER) project group for their valuable supports in the use of the METIS code.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianhong Huang or Yijun Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Huang, Q., Zhong, Y. et al. H-mode experimental integrated modeling of impurity injection to control divertor heat flux on HL-2A. J. Korean Phys. Soc. 82, 755–762 (2023). https://doi.org/10.1007/s40042-023-00747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00747-4

Keywords

Navigation