Skip to main content
Log in

Influence of Cross-Field Transport in a Divertor on Seeded Impurity Radiation and Divertor Plasma Detachment

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract—

The dissipative divertor for the power and particle exhaust in a tokamak relies heavily on strong impurity radiation inside the divertor volume. In the present paper, the influence of the cross-field transport inside the divertor volume on the radiation loss by nitrogen and neon impurity seeding is studied in the SOLPS4.3 2D transport code. The study is carried out in a simplified tokamak geometry with long divertor legs, aimed at amplifying the effect of impurity radiation. It is shown that despite the simple analytical models predicting the enhancement of the low-Z impurity radiation loss with increasing cross-field heat conduction inside the divertor volume, the detailed 2D simulations demonstrate such a trend only if the electron density at the separatrix is used as the principal parameter quantifying the density of the edge plasma. However, if the total amount of the hydrogen isotope particles, which is a more suitable parameter for the edge plasma characterization, is considered, then the cross-field transport shows practically no impact on the impurity radiation in the divertor. It is found also that for a fixed ratio of the impurity to the main plasma content in the edge, two stable solutions can exist in a rather wide interval of the densities of the edge plasma. These solutions are attributed to the different distributions of the seeded impurity between the outer and inner divertors. Jumps between these two stable branches may result in bifurcation-like transitions between the attached and detached divertor regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. F. Matthews, J. Nucl. Mater. 220–222, 104 (1995).

    Article  ADS  Google Scholar 

  2. A. S. Krasheninnikov, A. A. Kukushkin, and A. A. Pshe-nov, Phys. Plasmas 23, 055602 (2016).

  3. A. Loarte, B. Lipschultz, A. S. Kukushkin, G. F. Matthews, P. C. Stangeby, N. Asakura, G. F. Counsell, G. Federici, A. Kallenbach, K. Krieger, A. Mahdavi, V. Philipps, D. Reiter, J. Roth, J. Strachan, et al., Nucl. Fusion 47, S203 (2007).

    Article  Google Scholar 

  4. M. Wischmeier, J. Nucl. Mater. 463, 22 (2015).

    Article  ADS  Google Scholar 

  5. R. J. Goldston, M. L. Reinke, and J. A. Schwartz, Plasma Phys. Control. Fusion 59, 055015 (2017).

  6. F. Reimold, M. Wischmeier, M. Bernert, S. Potzel, D. Coster, X. Bonnin, D. Reiter, G. Meisl, A. Kallenbach, L. Aho-Mantila, and U. Stroth, J. Nucl. Mater. 463, 128 (2015).

    Article  ADS  Google Scholar 

  7. M. Bernert, M. Wischmeier, A. Huber, F. Reimold, B. Lipschultz, C. Lowry, S. Brezinsek, R. Dux, T. Eich, A. Kallenbach, A. Lebschy, C. Maggi, R. McDermott, T. Pütterich, and S. Wiesen, Nucl. Mater. Energy 12, 111 (2017).

    Article  Google Scholar 

  8. V. Rozhansky, E. Kaveeva, P. Molchanov, I. Veselova, S. Voskoboynikov, D. Coster, E. Fable, T. Puetterich, E. Viezzer, A. S. Kukushkin, and A. Kirk, Nucl. Fusion 55, 073017 (2015).

  9. S. I. Krasheninnikov, A. A. Batishcheva, and A. N. Simakov, Phys. Plasmas 5, 2297 (1998).

    Article  ADS  Google Scholar 

  10. D. Carralero, S. Artene, M. Bernert, G. Birkenmeier, M. Faitsch, P. Manz, P. de Marne, U. Stroth, M. Wischmeier, and E. Wolfrum, Nucl. Fusion 58, 096015 (2018).

  11. F. Nespoli, B. Labit, I. Furno, J. Horacek, C. K. Tsui, J. A. Boedo, R. Maurizio, H. Reimerdes, C. Theiler, P. Ricci, F. D. Halpern, U. Sheikh, K. Verhaegh, R. A. Pitts, and F. Militello, Nucl. Fusion 57, 126029 (2017).

  12. C. K. Tsui, J. A. Boedo, F. D. Halpern, J. Loizu, F. Nespoli, J. Horáček, B. Labit, J. Morales, H. Reimerdes, P. Ricci, C. Theiler, S. Coda, B. P. Duval, and I. Furno, Phys. Plasmas 24, 062508 (2017).

  13. H. J. Sun, E. Wolfrum, T. Eich, B. Kurzan, S. Potzel, and U. Stroth, Plasma Phys. Control. Fusion 57, 125011 (2015).

  14. A. A. Stepanenko and S. I. Krasheninnikov, Phys. Plasmas 25, 012305 (2018).

  15. A. S. Kukushkin, H. D. Pacher, V. Kotov, G. W. Pacher, and D. Reiter, Fusion Eng. Des. 86, 2865 (2011).

    Article  Google Scholar 

  16. A. A. Stepanenko, H. Q. Wang, and S. I. Krasheninnikov, Phys. Plasmas 26, 122303 (2019).

  17. B. J. Braams, PhD thesis (Rijksuniversiteit, Utrecht, 1986).

  18. D. Reiter, M. Baelmans, and P. Börner, Fusion Sci. Technol. 47, 172 (2005).

    Article  Google Scholar 

  19. S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, A. S. Kukushkin, S. W. Lisgo, R. A. Pitts, V. Rozhansky, G. Saibene, I. Veselova, and S. Voskoboynikov, J. Nucl. Mater. 463, 480 (2015).

    Article  ADS  Google Scholar 

  20. D. Reiter, The EIRENE Code User Manual Including B2-EIRENE Interface. Version : 11/2009 (2009). http://www.eirene.de/.

  21. D. Reiter, C. May, M. Baelmans, and P. Börner, J. Nucl. Mater. 241–243, 342 (1997).

    Article  ADS  Google Scholar 

  22. R. Schneider, X. Bonnin, K. Borrass, D. P. Coster, H. Kastelewicz, D. Reiter, V. A. Rozhansky, and B. J. Braams, Contrib. Plasma Phys. 46, 3 (2006).

    Article  ADS  Google Scholar 

  23. A. A. Pshenov, A. S. Kukushkin, and S. I. Krasheninnikov, Phys. Plasmas 24, 072508 (2017).

  24. A. Kallenbach, M. Bernert, M. Beurskens, L. Casali, M. Dunne, T. Eich, L. Giannone, A. Herrmann, M. Maraschek, S. Potzel, F. Reimold, V. Rohde, J. Schweinzer, E. Viezzer, M. Wischmeier, et al., Nucl. Fusion 55, 053026 (2015).

  25. A. A. Pshenov, A. S. Kukushkin, and S. I. Krasheninnikov, Nucl. Mater. Energy 12, 948 (2017).

    Article  Google Scholar 

  26. V. Rozhansky, P. Molchanov, I. Veselova, S. Voskoboynikov, A. Kirk, and D. Coster, J. Nucl. Mater. 438, S297 (2013).

    Article  ADS  Google Scholar 

  27. V. Rozhansky, E. Kaveeva, I. Senichenkov, and E. Vekshina, Plasma Phys. Controlled Fusion 60, 035001 (2018).

  28. V. Rozhansky, E. Sytova, I. Senichenkov, I. Veselova, S. Voskoboynikov, and D. Coster, J. Nucl. Mater. 463, 477 (2015).

    Article  ADS  Google Scholar 

  29. A. Loarte, R. D. Monk, J. R. Martín-Solís, D. J. Campbell, A. V. Chankin, S. Clement, S. J. Davies, J. Ehrenberg, S. K. Erents, H. Y. Guo, P. J. Harbour, L. D. Hor-ton, L. C. Ingesson, H. Jäckel, J. Lingertat, et al., Nucl. Fusion 38, 331 (1998).

    Article  ADS  Google Scholar 

  30. K. Verhaegh, B. Lipschultz, B. P. Duval, O. Février, A. Fil, C. Theiler, M. Wensing, C. Bowman, D. S. Gah-le, J. R. Harrison, B. Labit, C. Marini, R. Maurizio, H. de Oliveira, H. Reimerdes, et al., Nucl. Fusion 59, 126038 (2019).

  31. R. K. Janev, D. E. Post, W. D. Langer, K. Evans, D. B. Heifetz, and J. C. Weisheit, J. Nucl. Mater. 121, 10 (1984).

    Article  ADS  Google Scholar 

  32. S. I. Krasheninnikov, M. Rensink, T. D. Rognlien, A. S. Kukushkin, J. A. Goetz, B. LaBombard, B. Lipschultz, J. L. Terry, and M. Umansky, J. Nucl. Mater. 266, 251 (1999).

    Article  ADS  Google Scholar 

  33. S. I. Krasheninnikov, A. S. Kukushkin, A. A. Pshenov, A. I. Smolyakov, and Y. Zhang, Nucl. Mater. Energy 12, 1061 (2017).

    Article  Google Scholar 

  34. A. S. Kukushkin, H. D. Pacher, G. W. Pacher, G. Janeschitz, D. Coster, A. Loarte, and D. Reiter, Nucl. Fusion 43, 716 (2003).

    Article  ADS  Google Scholar 

  35. A. Kallenbach, M. Bernert, R. Dux, T. Eich, S. S. Henderson, T. Pütterich, F. Reimold, V. Rohde, and H. J. Sun, Nucl. Mater. Energy 18, 166 (2019).

    Article  Google Scholar 

  36. A. S. Kukushkin and H. D. Pacher, Contrib. Plasma Phys. 56, 711 (2016).

    Article  ADS  Google Scholar 

  37. I. Y. Senichenkov, E. G. Kaveeva, E. A. Sytova, V. A. Rozhansky, S. P. Voskoboynikov, I. V. Veselova, D. P. Coster, X. Bonnin, and F. Reimold, Plasma Phys. Controlled Fusion 61, 045013 (2019).

  38. J. F. Drake, Phys. Fluids 30, 2429 (1987).

    Article  ADS  Google Scholar 

  39. A. G. McLean, A. W. Leonard, M. A. Makowski, M. Groth, S. L. Allen, J. A. Boedo, B. D. Bray, A. R. Briesemeister, T. N. Carlstrom, D. Eldon, M. E. Fenstermacher, D. N. Hill, C. J. Lasnier, C. Liu, T. H. Osborne, et al., J. Nucl. Mater. 463, 533 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the computing resources of the federal collective usage center, Complex for Simulation and Data Processing for Mega-Science Facilities at NRC “Kurchatov Institute” http://ckp.nrcki.ru/ and the computer resources of the scientific cluster of the research laboratory “Plasma-wall interactions and plasma technology” at the National Research Nuclear University (NRNU) MEPhI.

Funding

This work was partially supported by the Russian Science Foundation, grant 18-12-00329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pshenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenov, A.A., Kukushkin, A.S. & Krasheninnikov, S.I. Influence of Cross-Field Transport in a Divertor on Seeded Impurity Radiation and Divertor Plasma Detachment. Plasma Phys. Rep. 46, 587–596 (2020). https://doi.org/10.1134/S1063780X20060070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20060070

Keywords:

Navigation