Skip to main content
Log in

Light sterile neutrino and leptogenesis

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We studied models of leptogenesis where three right-handed Majorana neutrinos are involved and the minimal-extended seesaw mechanism including an additional singlet field produces four light neutrinos. This study shows that the type of mass ordering and heavy Majorana scales can be determined by inputting the simplest orthogonal matrix into the Casas-Ibarra (CI) representation of seesaw. The CP asymmetry produced from the decays of heavy neutrinos and the dilution mass are predicted in terms of the mass and mixing elements of the fourth neutrino. Upon the choice of CI matrix, the existence of a light sterile neutrino is required to explain the high-energy lepton asymmetry in light of phenomenological measurements. Although there are several free parameters attributable to an additional neutrino, the model can be in part constrained by low-energy experiments such as sterile neutrino searches and neutrinoless double-beta decays, as well as the observed baryon asymmetry in the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. DUNE Collaboration, B. Abi et al., Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE, JINST 15 (2020), no. 08 T08008, [arXiv:2002.02967]

  2. Hyper-Kamiokande Collaboration, K. Abe et al., Hyper-Kamiokande Design Report, arXiv:1805.04163

  3. B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Zh. Eksp. Teor. Fiz. 53, 1717–1725 (1967)

    Google Scholar 

  4. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)

    Article  ADS  MATH  Google Scholar 

  5. M. Agostini, G. Benato, J. Detwiler, Discovery probability of next-generation neutrinoless double- \(\beta \) decay experiments, Phys. Rev. D 96 (2017), no. 5 053001, [ arXiv:1705.02996]

  6. CUORE Collaboration, C. Alduino et al., First Results from CUORE: A Search for Lepton Number Violation via \(0\nu \beta \beta \) Decay of \(^{130}\)Te, Phys. Rev. Lett. 120 (2018), no. 13 132501, [ arXiv:1710.07988]

  7. GERDA Collaboration, M. Agostini et al., Improved Limit on Neutrinoless Double-\(\beta \) Decay of \(^{76}\)Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018), no. 13 132503, [ arXiv:1803.11100]

  8. Majorana Collaboration, C. E. Aalseth et al., Search for Neutrinoless Double-\(\beta \) Decay in \(^{76}\)Ge with the Majorana Demonstrator, Phys. Rev. Lett. 120 (2018), no. 13 132502, [ arXiv:1710.11608]

  9. EXO-200 Collaboration, J. B. Albert et al., Search for nucleon decays with EXO-200, Phys. Rev. D 97 (2018), no. 7 072007, [ arXiv:1710.07670]

  10. CUPID-0 Collaboration, O. Azzolini et al., First Result on the Neutrinoless Double-\(\beta \) Decay of \(^{82}Se\) with CUPID-0, Phys. Rev. Lett. 120 (2018), no. 23 232502, [ arXiv:1802.07791]

  11. SNO+ Collaboration, V. Fischer, Search for neutrinoless double-beta decay with SNO+, in 13th Conference on the Intersections of Particle and Nuclear Physics, 9, 2018. arXiv:1809.05986

  12. N.E.X.T. Collaboration, J. Martín-Albo et al., Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay. JHEP 05, 159 (2016). [arXiv:1511.09246]

    ADS  Google Scholar 

  13. V. Alenkov et al., First Results from the AMoRE-Pilot neutrinoless double beta decay experiment, Eur. Phys. J. C 79 (2019), no. 9 791, [ arXiv:1903.09483]

  14. A. S. Barabash et al., Calorimeter development for the SuperNEMO double beta decay experiment, Nucl. Instrum. Meth. A 868 (2017) 98–108, [ arXiv:1707.06823]

  15. LEGEND Collaboration, N. Abgrall et al., The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), AIP Conf. Proc. 1894 (2017), no. 1 020027, [ arXiv:1709.01980]

  16. KamLAND-Zen Collaboration, A. Gando et al., Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016), no. 8 082503, [ arXiv:1605.02889]. [Addendum: Phys.Rev.Lett. 117, 109903 (2016)]

  17. AMoRE Collaboration, V. Alenkov et al., Technical Design Report for the AMoRE \(0\nu \beta \beta \) Decay Search Experiment, arXiv:1512.05957

  18. NEOS Collaboration, Y. J. Ko et al., Sterile Neutrino Search at the NEOS Experiment, Phys. Rev. Lett. 118 (2017), no. 12 121802, [ arXiv:1610.05134]

  19. PROSPECT Collaboration, J. Ashenfelter et al., First search for short-baseline neutrino oscillations at HFIR with PROSPECT, Phys. Rev. Lett. 121 (2018), no. 25 251802, [ arXiv:1806.02784]

  20. DANSS Collaboration, I. Alekseev et al., Search for sterile neutrinos at the DANSS experiment, Phys. Lett. B 787 (2018) 56–63, [ arXiv:1804.04046]

  21. A. P. Serebrov et al., Search for sterile neutrinos with the Neutrino-4 experiment and measurement results, Phys. Rev. D 104 (2021), no. 3 032003, [ arXiv:2005.05301]

  22. SoLid Collaboration, Y. Abreu et al., SoLid: a short baseline reactor neutrino experiment, JINST 16 (2021), no. 02 P02025, [ arXiv:2002.05914]

  23. STEREO Collaboration, H. Almazán et al., Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data, Phys. Rev. Lett. 121 (2018), no. 16 161801, [ arXiv:1806.02096]

  24. RENO, NEOS Collaboration, Z. Atif et al., Search for sterile neutrino oscillation using RENO and NEOS data, arXiv:2011.00896

  25. L.S.N.D. Collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \(\bar{\nu }_e\) appearance in a \(\bar{\nu }_\mu \) beam. Phys. Rev. D 64, 112007 (2001). ([hep-ex/0104049])

    Article  Google Scholar 

  26. MiniBooNE Collaboration, A. A. Aguilar-Arevalo et al., Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018), no. 22 221801, [ arXiv:1805.12028]

  27. P. A. Machado, O. Palamara, D. W. Schmitz, The Short-Baseline Neutrino Program at Fermilab, Ann. Rev. Nucl. Part. Sci. 69 (2019) 363–387, [arXiv:1903.04608]

  28. S. Ajimura et al., Proposal: JSNS\(^2\)-II, arXiv:2012.10807

  29. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 155, 36 (1985)

    Article  ADS  Google Scholar 

  30. M. Fukugita, T. Yanagida, Baryogenesis Without Grand Unification. Phys. Lett. B 174, 45–47 (1986)

    Article  ADS  Google Scholar 

  31. M.A. Luty, Baryogenesis via leptogenesis. Phys. Rev. D 45, 455–465 (1992)

    Article  ADS  Google Scholar 

  32. Planck Collaboration, N. Aghanim et al., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys. 641 (2020) A1, [ arXiv:1807.06205]

  33. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma. Zh. Eksp. Teor. Fiz. 5, 32–35 (1967)

    Google Scholar 

  34. J.A. Harvey, M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation. Phys. Rev. D 42, 3344–3349 (1990)

    Article  ADS  Google Scholar 

  35. L. Covi, E. Roulet, F. Vissani, CP violating decays in leptogenesis scenarios. Phys. Lett. B 384, 169–174 (1996). ([hep-ph/9605319])

    Article  ADS  Google Scholar 

  36. E. Roulet, L. Covi, F. Vissani, On the CP asymmetries in Majorana neutrino decays. Phys. Lett. B 424, 101–105 (1998). ([hep-ph/9712468])

    Article  ADS  Google Scholar 

  37. H.B. Nielsen, Y. Takanishi, Baryogenesis via lepton number violation in anti-GUT model. Phys. Lett. B 507, 241–251 (2001). ([hep-ph/0101307])

    Article  ADS  Google Scholar 

  38. Z.-z. Xing, Z.-h. Zhao, The minimal seesaw and leptogenesis models, Rept. Prog. Phys. 84 (2021), no. 6 066201, [ arXiv:2008.12090]

  39. S.K. Kang, Low-energy CP violation and leptogenesis in a minimal seesaw model. J. Korean Phys. Soc. 78(9), 743–749 (2021)

    Article  ADS  Google Scholar 

  40. S. Chang, S.K. Kang, K. Siyeon, Minimal seesaw model with tri/bi-maximal mixing and leptogenesis. Phys. Lett. B 597, 78–88 (2004). ([hep-ph/0404187])

    Article  ADS  Google Scholar 

  41. K. Siyeon, Seesaw Scale and CP Phases in a Minimal Model of Leptogenesis, J. Korean Phys. Soc. 69 (2016), no. 11 1638–1643, [ arXiv:1611.04572]

  42. A. Abada, S. Davidson, A. Ibarra, F.X. Josse-Michaux, M. Losada, A. Riotto, Flavour Matters in Leptogenesis. JHEP 09, 010 (2006). ([hep-ph/0605281])

    Article  ADS  Google Scholar 

  43. E. Nardi, Y. Nir, E. Roulet, J. Racker, The Importance of flavor in leptogenesis. JHEP 01, 164 (2006). ([hep-ph/0601084])

    Article  ADS  Google Scholar 

  44. K. Moffat, S. Pascoli, S.T. Petcov, J. Turner, Leptogenesis from Low Energy \(CP\) Violation. JHEP 03, 034 (2019). [arXiv:1809.08251]

    Article  ADS  Google Scholar 

  45. A. Pilaftsis, T.E.J. Underwood, Resonant leptogenesis. Nucl. Phys. B 692, 303–345 (2004). ([hep-ph/0309342])

    Article  ADS  Google Scholar 

  46. J.A. Casas, A. Ibarra, Oscillating neutrinos and \(\mu \rightarrow e, \gamma \). Nucl. Phys. B 618, 171–204 (2001). ([hep-ph/0103065])

    Article  ADS  MATH  Google Scholar 

  47. W. Rodejohann, On Non-Unitary Lepton Mixing and Neutrino Mass Observables. Phys. Lett. B 684, 40–47 (2010). [arXiv:0912.3388]

    Article  ADS  Google Scholar 

  48. J. Barry, W. Rodejohann, H. Zhang, Light Sterile Neutrinos: Models and Phenomenology. JHEP 07, 091 (2011). [arXiv:1105.3911]

    Article  ADS  MATH  Google Scholar 

  49. H. Zhang, Light Sterile Neutrino in the Minimal Extended Seesaw. Phys. Lett. B 714, 262–266 (2012). [arXiv:1110.6838]

    Article  ADS  Google Scholar 

  50. N. Nath, M. Ghosh, S. Goswami, S. Gupta, Phenomenological study of extended seesaw model for light sterile neutrino. JHEP 03, 075 (2017). [arXiv:1610.09090]

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Goswami, V. K. N., A. Mukherjee, N. Narendra, Leptogenesis and eV scale sterile neutrino, Phys. Rev. D 105 (2022), no. 9 095040, [ arXiv:2111.14719]

  52. C. Giunti, E.M. Zavanin, Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario. JHEP 07, 171 (2015). [arXiv:1505.00978]

    Article  ADS  Google Scholar 

  53. S. Parke and M. Ross-Lonergan, Unitarity and the three flavor neutrino mixing matrix, Phys. Rev. D 93 (2016), no. 11 113009, [ arXiv:1508.05095]

  54. S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations. JHEP 06, 135 (2017). [arXiv:1703.00860]

    Article  ADS  Google Scholar 

  55. T2K Collaboration, K. Abe et al., Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations, Nature 580 (2020), no. 7803 339–344, [ arXiv:1910.03887]. [Erratum: Nature 583, E16 (2020)]

  56. NOvA Collaboration, M. A. Acero et al., First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA, Phys. Rev. Lett. 123 (2019), no. 15 151803, [ arXiv:1906.04907]

  57. Particle Data Group Collaboration, P. A. Zyla et al., Review of Particle Physics, PTEP 2020 (2020), no. 8 083C01

  58. P.F. de Salas, D.V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C.A. Ternes, M. Tórtola, J.W.F. Valle, 2020 global reassessment of the neutrino oscillation picture. JHEP 02, 071 (2021). [arXiv:2006.11237]

    Article  Google Scholar 

  59. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP 09, 178 (2020). [arXiv:2007.14792]

    Article  ADS  Google Scholar 

  60. ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29, [ arXiv:1207.7214]

  61. C.M.S. Collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). [arXiv:1207.7235]

    Article  ADS  Google Scholar 

  62. A. Pilaftsis, Heavy Majorana neutrinos and baryogenesis. Int. J. Mod. Phys. A 14, 1811–1858 (1999). ([hep-ph/9812256])

    Article  ADS  Google Scholar 

  63. S. Davidson, A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis. Phys. Lett. B 535, 25–32 (2002). ([hep-ph/0202239])

    Article  ADS  Google Scholar 

  64. C. H. Jang, B. J. Kim, Y. J. Ko, K. Siyeon, Neutrinoless Double Beta Decay and Light Sterile Neutrino, J. Korean Phys. Soc. 73 (2018), no. 11 1625–1630, [ arXiv:1811.09957]

Download references

Acknowledgements

This work was supported by NRF Grant funded by MSIT of Korea (NRF-2022R1A2C1009686) and by the Chung-Ang University research Grant in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Siyeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A \(4\times 4\) unitary transformation

A \(4\times 4\) unitary transformation

The standard parametrization of \(3\times 3\) transformation matrix for three neutrinos can be expressed such as

$$\begin{aligned}{} & {} V~=~R\left( \theta _{23}\right) R\left( \theta _{13},\delta _{13}\right) R\left( \theta _{12}\right) \nonumber \\{} & {} \quad =\left( \begin{array}{ccc} c_{12}c_{13}&{}s_{12}c_{13}&{}s_{13}e^{-i\delta }\\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta } &{} c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta } &{} s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta } &{} -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta } &{} c_{23}c_{13} \end{array}\right) \end{aligned}$$
(A.1)

where \(s_{ij}\) and \(c_{ij}\) denotes \(\sin {\theta _{ij}}\) and \(\cos {\theta _{ij}}\). For Majorana neutrinos, the transformation U is given by the product of V and \(P_2\), where

$$\begin{aligned} P_2=\left( \begin{array}{ccc} e^{i\eta _1} &{} 0 &{} 0 \\ 0 &{} e^{i\eta _2} &{} 0 \\ 0 &{} 0 &{} 1 \end{array}\right) . \end{aligned}$$
(A.2)

The matrix V is called \(U_\textrm{PMNS}\) and its elements are denoted as

$$\begin{aligned} U_\textrm{PMNS}=\left( \begin{array}{ccc} U_{e1} &{} U_{e2} &{} U_{e3} \\ U_{\mu 1} &{} U_{\mu 2} &{} U_{\mu 3} \\ U_{\tau 1} &{} U_{\tau 2} &{} U_{\tau 3} \end{array}\right) . \end{aligned}$$
(A.3)

When a sterile neutrino with \(T_{3L}=0\) is added to the neutrino contents, the \(4\times 4\) unitary transformation can be denoted by

$$\begin{aligned} U_F'=\left( \begin{array}{cccc} U'_{e1} &{} U'_{e2} &{} U'_{e3} &{} U'_{e4}\\ U'_{\mu 1} &{} U'_{\mu 2} &{} U'_{\mu 3} &{} U'_{\mu 4} \\ U'_{\tau 1} &{} U'_{\tau 2} &{} U'_{\tau 3} &{} U'_{\tau 4}\\ U'_{s1} &{} U'_{s2} &{} U'_{s3} &{} U'_{s4} \end{array}\right) , \end{aligned}$$
(A.4)

which consists of six rotations such as

$$\begin{aligned} U'_F= & {} R\left( \theta _{34},\delta _{34}\right) R\left( \theta _{24},\delta _{24}\right) R\left( \theta _{14}\right) \left( \begin{array}{cc} V &{} 0 \\ 0 &{} 1 \end{array}\right) \end{aligned}$$
(A.5)

where each \(R(\theta _{ij})\) is a \(4\times 4\) rotation matrix and the V is defined in Eq. (A.1). The elements of \(U'_F\) are specified in terms of mixing angles and phases of the sterile neutrino:

$$\begin{aligned}{} & {} \left( \begin{array}{c} U'_{e1} \\ U'_{\mu 1} \\ U'_{\tau 1} \\ U'_{s1} \end{array} \right) = \left( \begin{array}{c} V_{11} c_{14} \\ -V_{11} s_{14}s_{24}e^{-i \delta _{24}}+V_{21} c_{24} \\ -V_{11} s_{14}s_{34}c_{24}e^{-i \delta _{34}}-V_{21} s_{24}s_{34}e^{i (\delta _{24}-\delta _{34})} +V_{31} c_{34} \\ -V_{11} s_{14}c_{24}c_{34} - V_{21} s_{24}c_{34}e^{i \delta _{24}}-V_{31} s_{34}e^{i \delta _{34}} \end{array} \right) \nonumber \\{} & {} \left( \begin{array}{c} U'_{e2} \\ U'_{\mu 2} \\ U'_{\tau 2} \\ U'_{s2} \end{array} \right) = \left( \begin{array}{c} V_{12} c_{14} \\ - V_{12} s_{14}s_{24}e^{-i \delta _{24}}+V_{22} c_{24} \\ - V_{12} s_{14}s_{34}c_{24}e^{-i \delta _{34}}- V_{22} s_{24}s_{34}e^{i (\delta _{24}-\delta _{34})}+V_{32}c_{34} \\ - V_{12} s_{14}c_{24}c_{34}- V_{22} s_{24} c_{34}e^{-i \delta _{24}}-V_{32} s_{34}e^{i \delta _{34}} \end{array} \right) \nonumber \\{} & {} \left( \begin{array}{c} U'_{e3} \\ U'_{\mu 3} \\ U'_{\tau 3} \\ U'_{s3} \end{array} \right) = \left( \begin{array}{c} V_{13} c_{14} \\ -V_{13}s_{14}s_{24}+V_{23} c_{24}e^{-i \delta _{24}} \\ -V_{13} s_{14}s_{34}c_{24}e^{-i \delta _{34}} - V_{23}s_{24}s_{34}e^{i (\delta _{24}-\delta _{34})} +V_{33} c_{34} \\ -V_{13} s_{14}c_{24}c_{34} -V_{23} s_{24}c_{34}e^{i \delta _{24}} -V_{33}s_{34}e^{i \delta _{34}} \end{array} \right) \nonumber \\{} & {} \left( \begin{array}{c} U'_{e4} \\ U'_{\mu 4} \\ U'_{\tau 4} \\ U'_{s4} \end{array} \right) = \left( \begin{array}{c} s_{14} \\ s_{24}c_{14}e^{-i \delta _{24}} \\ s_{34}c_{14} c_{24}e^{-i \delta _{34}} \\ c_{14}c_{24}c_{34} \end{array}\right) \end{aligned}$$
(A.6)

For the transformation of Majorana neutrinos, the diagonal phase transformation with three Majorana phases also here is attached such that \(U'=U'_FP_3\) with the following diagonal phase transformation:

$$\begin{aligned} P_3=\left( \begin{array}{cccc} e^{i\eta _1} &{} 0 &{} 0 &{} 0 \\ 0 &{} e^{i\eta _2} &{} &{} 0 \\ 0 &{} 0 &{} e^{i\eta _3} &{} 0 \\ 0 &{} 0 &{} 0 &{} 1 \\ \end{array}\right) . \end{aligned}$$
(A.7)

The individual rotation angle can be expressed in terms of the elements of \(U'_F\),

$$\begin{aligned}{} & {} s_{14}^2=|U_{e4}'|^2 \nonumber \\{} & {} s_{24}^2=|U_{\mu 4}'|^2(1-|U_{e4}'|^2)^{-1} \nonumber \\{} & {} s_{34}^2=|U_{\tau 4}'|^2(1-|U_{e4}'|^2-|U_{\mu 4}'|^2)^{-1} \end{aligned}$$
(A.8)

where \(|U_{s4}'|^2=1-|U_{e4}'|^2-|U_{\mu 4}'|^2-|U_{\tau 4}'|^2.\)

Fig. 4
figure 4

\(Y_B\) vs. \(m_{ee}\) for given choice of \((\delta _{24}, ~\delta _{34})\) in Choice \(A'\). Majorana phases \(\eta _2\) and \(\eta _3\) run fully 0 to \(\pi \) so as to cover the colored area. The blue dotted horizontal line at \((8.61\pm 0.05)\times 10^{-11}\) indicates the observed baryon asymmetry, while the red dotted vertical line at 21 meV indicates the upper bound of sensitivity of AMoRE II. The solid and dashed lines inside each shade mark the criteria, \(\eta _2=0\) and \(\eta _3=0\), respectively. Only positive results are presented

Fig. 5
figure 5

Contours of \(Y_B\) and \(m_{ee}\) in \(\eta _3-\eta _2\) space for given choice of \((\delta _{24}, ~\delta _{34})\) in Choice \(A'\). The contour of \(m_{ee}=28\) meV(24 meV) is represented by magenta(blue) solid line. The green curves \(Y_B^\textrm{obs}\) correspond to the contours matched to the observation. The gray areas represent \(|Y_B|<Y_B^\textrm{obs}\), while the orange and pink areas represent \(Y_B>Y_B^\textrm{obs}\) and \(Y_B<-Y_B^\textrm{obs}\), respectively

Fig. 6
figure 6

\(Y_B\) vs. \(m_{ee}\) for given choice of \((\delta _{24}, ~\delta _{34})\) in Choice \(B'\). Majorana phases \(\eta _1\) and \(\eta _2\) run fully 0 to \(\pi \) so as to cover the colored area. The horizontal doted blue line at \((8.61\pm 0.05)\times 10^{-11}\) indicates the observed baryon asymmetry, while the vertical two lines at 21 meV and 49 meV indicate the upper bounds of sensitivities of AMoRE II and KamLAND2-Zen, respectively. The solid and dashed lines inside each shade mark the criteria \(\eta _1=0\) and \(\eta _2=0\), respectively. Only positive results are presented

Fig. 7
figure 7

Contours of \(Y_B\) and \(m_{ee}\) in \(\eta _2-\eta _1\) space for given choice of \((\delta _{24}, ~\delta _{34})\) in Choice \(B'\), The contour of \(m_{ee}=49\) meV(30 meV) is represented by magenta(blue) line. The green curves \(Y_B^\textrm{obs}\) correspond to the contours matched to the observation. The gray areas represent \(|Y_B|<Y_B^\textrm{obs}\), while the orange and pink areas represent \(Y_B>Y_B^\textrm{obs}\) and \(Y_B<-Y_B^\textrm{obs}\), respectively

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, KY., Siyeon, K. Light sterile neutrino and leptogenesis. J. Korean Phys. Soc. 81, 1211–1224 (2022). https://doi.org/10.1007/s40042-022-00674-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00674-w

Keywords

Navigation