Skip to main content
Log in

Electric field-assisted patterning of few-layer MoTe2 by scanning probe lithography

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDs) have been widely studied as attractive two-dimensional (2D) materials. In particular, specific TMD materials have attracted increasing attention because of their intriguing features as 2D topological insulators (TIs), which have a metallic edge state and bulk band gap. To realize next-generation devices that employ the metallic edge states of 2D TI materials, precise patterning of the edges is essential. In this study, we demonstrate a simple nanopatterning technique for 1 T’-MoTe2, which is known to be a 2D TI material, using atomic force microscopy (AFM)-based scanning probe lithography (SPL). Our AFM-based SPL method entails delicately scratching a few-layer 1 T’-MoTe2 sample while applying an electric field using a conductive AFM tip. The proposed method enables nanoscale lines, holes, and letters to be reliably patterned on the 1 T’-MoTe2 sample. This study results in the development of a clean method that is compatible with existing mass-production facilities to fabricate various TMD materials for realizing next-generation electronic devices and for studying the underlying physics of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat Rev Mater 2, 17033 (2017)

    Article  ADS  Google Scholar 

  2. M. Zeng, Y. Xiao, J. Liu, K. Yang, L. Fu, Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem Rev 118, 6236 (2018)

    Article  Google Scholar 

  3. T. Chowdhury, E.C. Sadler, T.J. Kempa, Progress and prospects in transition-metal dichalcogenide research beyond 2D. Chem Rev 120, 12563 (2020)

    Article  Google Scholar 

  4. K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, Z. Guo, Recent developments in emerging two-dimensional materials and their applications. J Mater Chem C 8, 387 (2020)

    Article  Google Scholar 

  5. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators. Rev Mod Phys 82, 3045 (2010)

    Article  ADS  Google Scholar 

  6. Y. Xia et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys 5, 398 (2009)

    Article  Google Scholar 

  7. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  8. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene. Phys Rev Lett 95, 226801 (2005)

    Article  ADS  Google Scholar 

  9. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  10. L. Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions. Phys Rev Lett 98, 106803 (2007)

    Article  ADS  Google Scholar 

  11. S. Cai et al., Independence of topological surface state and bulk conductance in three-dimensional topological insulators. NPJ Quantum Mater. 3, 62 (2018)

    Article  ADS  Google Scholar 

  12. M.V. Bollinger, J.V. Lauritsen, K.W. Jacobsen, J.K. Nørskov, S. Helveg, F. Besenbacher, One-dimensional metallic edge states in MoS2. Phys Rev Lett 87, 196803 (2001)

    Article  ADS  Google Scholar 

  13. C. Pauly et al., Subnanometre-wide electron channels protected by topology. Nat Phys 11, 338 (2015)

    Article  Google Scholar 

  14. L. Peng, Y. Yuan, G. Li, X. Yang, J.J. Xian, C.J. Yi, Y.G. Shi, Y.S. Fu, Observation of topological states residing at step edges of WTe2. Nat Commun 8, 659 (2017)

    Article  ADS  Google Scholar 

  15. H.W. Kim et al., Symmetry dictated grain boundary state in a two-dimensional topological insulator. Nano Lett. 20, 5837 (2020)

    Article  ADS  Google Scholar 

  16. S.C. Minne, Ph. Flueckiger, H.T. Soh, C.F. Quate, Atomic force microscope lithography using amorphous silicon as a resist and advances in parallel operation. J Vac Sci Technol B 13, 1380 (1995)

    Article  Google Scholar 

  17. R. García, M. Calleja, F. Pérez-Murano, Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation. Appl Phys Lett. 72, 2295 (1998)

    Article  ADS  Google Scholar 

  18. R. Garcia, R.V. Martinez, J. Martinez, Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35, 29 (2006)

    Article  Google Scholar 

  19. L. Weng, L. Zhang, Y.P. Chen, L.P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett 93, 093107 (2008)

    Article  ADS  Google Scholar 

  20. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, T. Machida, Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl Phys Lett 94, 082107 (2009)

    Article  ADS  Google Scholar 

  21. M. Donarelli, F. Perrozzi, F. Bisti, F. Paparella, V. Feyer, A. Ponzoni, M. Gonchigsuren, L. Ottaviano, Few layered MoS2 lithography with an AFM tip: Description of the technique and nanospectroscopy investigations. Nanoscale 7, 11453 (2015)

    Article  Google Scholar 

  22. A.I. Dago, Y.K. Ryu, R. Garcia, Sub-20nm patterning of thin layer WSe2 by scanning probe lithography. Appl Phys Lett 109, 163103 (2016)

    Article  ADS  Google Scholar 

  23. P. Zhao, R. Wang, D.H. Lien, Y. Zhao, H. Kim, J. Cho, G.H. Ahn, A. Javey, Scanning probe lithography patterning of monolayer semiconductors and application in quantifying edge recombination. Adv Mater 31, e1900136 (2019)

    Article  Google Scholar 

  24. Y. He, H. Dong, T. Li, C. Wang, W. Shao, Y. Zhang, L. Jiang, W. Hu, Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. Appl Phys Lett 97, 133301 (2010)

    Article  ADS  Google Scholar 

  25. B. Vasić, M. Kratzer, A. Matković, A. Nevosad, U. Ralević, D. Jovanović, C. Ganser, C. Teichert, R. Gajić, Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology 24, 015303 (2013)

    Article  ADS  Google Scholar 

  26. P. Kun, B. Fülöp, G. Dobrik, P. Nemes-Incze, I.E. Lukács, S. Csonka, C. Hwang, L. Tapasztó, Robust quantum point contact operation of narrow graphene constrictions patterned by AFM cleavage lithography. NPJ 2D Mater Appl 4, 43 (2020)

    Article  Google Scholar 

  27. Y.M. Kim, J. Lee, D.J. Jeon, S.E. Oh, J.S. Yeo, Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications. Appl Microsc 51, 7 (2021)

    Article  Google Scholar 

  28. M. Moreno-Moreno, P. Ares, C. Moreno, F. Zamora, C. Gómez-Navarro, J. Gómez-Herrero, AFM manipulation of gold nanowires to build electrical circuits. Nano Lett 19, 5459 (2019)

    Article  ADS  Google Scholar 

  29. M. Kim, S. Lee, J. Lee, D.K. Kim, Y.J. Hwang, G. Lee, G.R. Yi, Y.J. Song, Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles. Opt Express 23, 12766 (2015)

    Article  ADS  Google Scholar 

  30. J.B. Park, B. Jaeckel, B.A. Parkinson, Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope. Langmuir 22, 5334 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Grant No. 2020R1A2C1005299).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Heon Kim or Hyo Won Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, M.S., Ku, J., Jang, WJ. et al. Electric field-assisted patterning of few-layer MoTe2 by scanning probe lithography. J. Korean Phys. Soc. 82, 274–279 (2023). https://doi.org/10.1007/s40042-022-00673-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00673-x

Keywords

Navigation