Skip to main content
Log in

Patterning Functionalized Surfaces of 2D Materials by Nanoshaving

  • Original Article
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) and scanning probe lithography can be used for the mechanical treatment of various surfaces, including polymers, metals, and semiconductors. The technique of nanoshaving, in which materials are removed using the AFM tip, is employed in this work to produce nanopatterns of self-assembled monolayers (SAMs) on two-dimensional (2D) materials. The materials used are monolayers of transition metal dichalcogenides (TMDs), namely, MoS2 and WS2, which are noncovalently functionalized with perylene diimide (PDI), a perylene derivative. The approach involves rastering an AFM probe across the surface at a controlled increased load in ambient conditions. As a result of the strong bond between PDI SAM and TMD, loads in excess of 1 μN are required to pattern the monolayer. Various predefined patterns, including a grating pattern with feature sizes below 250 nm, are demonstrated. Results indicate the high precision of nanoshaving as an accurate and nondestructive lithographic technique for 2D materials. The work functions of shaved heterostructures are also examined using Kelvin probe force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9:577–587. https://doi.org/10.1038/nnano.2014.157

    Article  Google Scholar 

  2. Yan Y, Chang S, Wang T, Geng Y (2019) Scratch on polymer materials using AFM tip-based approach: a review. Polymers 11:1590. https://doi.org/10.3390/polym11101590

    Article  Google Scholar 

  3. Michels T, Rangelow IW (2014) Review of scanning probe micromachining and its applications within nanoscience. Microelectron Eng 126:191–203. https://doi.org/10.1016/j.mee.2014.02.011

    Article  Google Scholar 

  4. Liu GY, Xu S, Qian Y (2000) Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc Chem Res 33:457–466. https://doi.org/10.1021/ar980081s

    Article  Google Scholar 

  5. Woodson M, Liu J (2007) Functional nanostructures from surface chemistry patterning. Phys Chem Chem Phys 9:207–225. https://doi.org/10.1039/b610651j

    Article  Google Scholar 

  6. Netzer L, Sagiv J (1983) A new approach to construction of artificial monolayer assemblies. J Am Chem Soc 105:674–676. https://doi.org/10.1021/ja00341a087

    Article  Google Scholar 

  7. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483. https://doi.org/10.1021/ja00351a063

    Article  Google Scholar 

  8. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335. https://doi.org/10.1021/ja00183a049

    Article  Google Scholar 

  9. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169. https://doi.org/10.1021/cr0300789

    Article  Google Scholar 

  10. El Zubir O, Barlow I, Leggett GJ, Williams NH (2013) Fabrication of molecular nanopatterns at aluminium oxide surfaces by nanoshaving of self-assembled monolayers of alkylphosphonates. Nanoscale 5:11125–11131. https://doi.org/10.1039/c3nr04701f

    Article  Google Scholar 

  11. Yan Y, Geng Y, Hu Z (2015) Recent advances in AFM tip-based nanomechanical machining. Int J Mach Tools Manuf 99:1–18. https://doi.org/10.1016/j.ijmachtools.2015.09.004

    Article  Google Scholar 

  12. Zhang F, Edwards D, Deng X, Wang Y, Kilpatrick JI, Bassiri-Gharb N, Kumar A, Chen D, Gao X, Rodriguez BJ (2020) Investigation of AFM-based machining of ferroelectric thin films at the nanoscale. J Appl Phys 127:034103. https://doi.org/10.1063/1.5133018

    Article  Google Scholar 

  13. Mathew PT, Rodriguez BJ, Fang F (2020) Atomic and close-to-atomic scale manufacturing: a review on atomic layer removal methods using atomic force microscopy. Nanomanuf Metrol 3:167–186. https://doi.org/10.1007/s41871-020-00067-2

    Article  Google Scholar 

  14. Göbel H, von Blanckenhagen P (1995) Atomic force microscope as a tool for metal surface modifications. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 13:1247–1251. https://doi.org/10.1116/1.588245

    Article  Google Scholar 

  15. Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19:140–145. https://doi.org/10.1016/j.mattod.2015.08.019

    Article  Google Scholar 

  16. Chen X, McDonald AR (2016) Functionalization of two-dimensional transition-metal dichalcogenides. Adv Mater 28:5738–5746. https://doi.org/10.1002/adma.201505345

    Article  Google Scholar 

  17. Kim H, Kim W, O’Brien M, McEvoy N, Yim C, Marcia M, Hauke F, Hirsch A, Kim G-T, Duesberg GS (2018) Optimized single-layer MoS2 field-effect transistors by non-covalent functionalisation. Nanoscale 10:17557–17566. https://doi.org/10.1039/c8nr02134a

    Article  Google Scholar 

  18. Knirsch KC, Berner NC, Nerl HC, Cucinotta CS, Gholamvand Z, McEvoy N, Wang Z, Abramovic I, Vecera P, Halik M, Sanvito S, Duesberg GS, Nicolosi V, Hauke F, Hirsch A, Coleman JN, Backes C (2015) Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9:6018–6030. https://doi.org/10.1021/acsnano.5b00965

    Article  Google Scholar 

  19. Berner NC, Winters S, Backes C, Yim C, Dümbgen KC, Kaminska I, Mackowski S, Cafolla AA, Hirsch A, Duesberg GS (2015) Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene. Nanoscale 7:16337–16342. https://doi.org/10.1039/c5nr04772b

    Article  Google Scholar 

  20. Winters S, Berner NC, Mishra R, Dümbgen KC, Backes C, Hegner M, Hirsch A, Duesberg GS (2015) On-surface derivatisation of aromatic molecules on graphene: the importance of packing density. Chem Commun 51:16778–16781. https://doi.org/10.1039/c5cc06433c

    Article  Google Scholar 

  21. Singh M, Holzinger M, Tabrizian M, Winters S, Berner NC, Cosnier S, Duesberg GS (2015) Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J Am Chem Soc 137:2800–2803. https://doi.org/10.1021/ja511512m

    Article  Google Scholar 

  22. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052. https://doi.org/10.1021/acs.chemrev.5b00188

    Article  Google Scholar 

  23. Marcia M, Hirsch A, Hauke F (2017) Perylene-based non-covalent functionalization of 2D materials. FlatChem 1:89–103. https://doi.org/10.1016/j.flatc.2017.01.001

    Article  Google Scholar 

  24. Schmidt CD, Böttcher C, Hirsch A (2007) Synthesis and aggregation properties of water-soluble Newkome-dendronized perylenetetracarboxdiimides. European J Org Chem 2007:5497–5505. https://doi.org/10.1002/ejoc.200700567

    Article  Google Scholar 

  25. Wirtz C, Hallam T, Cullen CP, Berner NC, O’Brien M, Marcia M, Hirsch A, Duesberg GS (2015) Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers. Chem Commun 51:16553–16556. https://doi.org/10.1039/c5cc05726d

    Article  Google Scholar 

  26. Backes C, Schmidt CD, Rosenlehner K, Hauke F, Coleman JN, Hirsch A (2010) Nanotube surfactant design: the versatility of water-soluble perylene bisimides. Adv Mater 22:788–802. https://doi.org/10.1002/adma.200902525

    Article  Google Scholar 

  27. Kozhemyakina NV, Englert JM, Yang G, Spiecker E, Schmidt CD, Hauke F, Hirsch A (2010) Non-covalent chemistry of graphene: electronic communication with dendronized perylene bisimides. Adv Mater 22:5483–5487. https://doi.org/10.1002/adma.201003206

    Article  Google Scholar 

  28. Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Varela M, Hauke F, Hirsch A (2016) Noncovalent functionalization of black phosphorus. Angew Chem Int Ed Engl 55:14557–14562. https://doi.org/10.1002/anie.201604784

    Article  Google Scholar 

  29. Hirsch A, Hauke F (2018) Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew Chem Int Ed Engl 57:4338–4354. https://doi.org/10.1002/anie.201708211

    Article  Google Scholar 

  30. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58:2921–2923. https://doi.org/10.1063/1.105227

    Article  Google Scholar 

  31. Yan L, Punckt C, Aksay IA, Mertin W, Bacher G (2011) Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett 11:3543–3549. https://doi.org/10.1021/nl201070c

    Article  Google Scholar 

  32. Li Y, Xu C-Y, Zhang B-Y, Zhen L (2013) Work function modulation of bilayer MoS2 nanoflake by backgate electric field effect. Appl Phys Lett 103:033122. https://doi.org/10.1063/1.4816076

    Article  Google Scholar 

  33. Puntambekar KP, Pesavento PV, Frisbie CD (2003) Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy. Appl Phys Lett 83:5539–5541. https://doi.org/10.1063/1.1637443

    Article  Google Scholar 

  34. Kahn A (2016) Fermi level, work function and vacuum level. Mater Horiz 3:7–10. https://doi.org/10.1039/C5MH00160A

    Article  Google Scholar 

  35. Shimizu Y (2021) Laser interference lithography for fabrication of planar scale gratings for optical metrology. Nanomanuf Metrol 4:3–27. https://doi.org/10.1007/s41871-020-00083-2

    Article  Google Scholar 

  36. O’Brien M, McEvoy N, Hallam T, Kim H-Y, Berner NC, Hanlon D, Lee K, Coleman JN, Duesberg GS (2014) Transition metal dichalcogenide growth via close proximity precursor supply. Sci Rep 4:7374. https://doi.org/10.1038/srep07374

    Article  Google Scholar 

  37. Sadewasser S, Glatzel T (2018) Kelvin probe force microscopy: from single charge detection to device characterization. Springer, Cham

    Book  Google Scholar 

  38. O’Brien M, McEvoy N, Hanlon D, Hallam T, Coleman JN, Duesberg GS (2016) Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: layer number, stacking orientation and resonant effects. Sci Rep 6:19476. https://doi.org/10.1038/srep19476

    Article  Google Scholar 

  39. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of Raman Scattering. Adv Funct Mater 22:1385–1390. https://doi.org/10.1002/adfm.201102111

    Article  Google Scholar 

  40. Tilmann R, Weiß C, Cullen CP, Peters L, Hartwig O, Höltgen L, Stimpel-Lindner T, Knirsch KC, McEvoy N, Hirsch A, Duesberg GS (2021) Highly selective non-covalent on-chip functionalization of layered materials. Adv Electron Mater 7(7):2000564. https://doi.org/10.1002/aelm.202000564

    Article  Google Scholar 

  41. Li F, Qi J, Xu M, Xiao J, Xu Y, Zhang X, Liu S, Zhang Y (2017) Layer dependence and light tuning surface potential of 2D MoS2 on various substrates. Small 13:1603103. https://doi.org/10.1002/smll.201603103

    Article  Google Scholar 

  42. Rubim JC, Aroca RF (2008) The observation of high order overtones and combinations in the SERRS spectra of a perylene dye spin coated onto silver island films. Phys Chem Chem Phys 10:5412–5418. https://doi.org/10.1039/b804950e

    Article  Google Scholar 

  43. Obaidulla SM, Habib MR, Khan Y, Kong Y, Liang T, Xu M (2020) Photoluminescence: MoS2 and perylene derivative based type-II heterostructure: Bandgap engineering and giant photoluminescence enhancement. Adv Mater Interfaces 7:2070014. https://doi.org/10.1002/admi.202070014

    Article  Google Scholar 

  44. Choi S, Shaolin Z, Yang W (2014) Layer-number-dependent work function of MoS2 nanoflakes. J Korean Phys Soc 64:1550–1555. https://doi.org/10.3938/jkps.64.1550

    Article  Google Scholar 

  45. Tamulewicz M, Kutrowska-Girzycka J, Gajewski K, Serafińczuk J, Sierakowski A, Jadczak J, Bryja L, Gotszalk TP (2019) Layer number dependence of the work function and optical properties of single and few layers MoS2: effect of substrate. Nanotechnol 30:245708. https://doi.org/10.1088/1361-6528/ab0caf

    Article  Google Scholar 

  46. Wang X, Dan J, Hu Z, Leong JF, Zhang Q, Qin Z, Li S, Lu J, Pennycook SJ, Sun W, Sow CH (2019) Defect heterogeneity in monolayer WS2 unveiled by work function variance. Chem Mater 31:7970–7978. https://doi.org/10.1021/acs.chemmater.9b02157

    Article  Google Scholar 

  47. Kaushik V, Ahmad M, Agarwal K, Varandani D, Belle BD, Das P, Mehta BR (2020) Charge transport in 2D MoS2, WS2, and MoS2–WS2 heterojunction-based field-effect transistors: role of ambipolarity. J Phys Chem C 124:23368–23379. https://doi.org/10.1021/acs.jpcc.0c05651

    Article  Google Scholar 

  48. Sharma I, Mehta BR (2017) KPFM and CAFM based studies of MoS2 (2D)/WS2 heterojunction patterns fabricated using stencil mask lithography technique. J Alloys Compd 723:50–57. https://doi.org/10.1016/j.jallcom.2017.06.203

    Article  Google Scholar 

  49. Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, Wang B, Crespi VH, López-Urías F, Charlier J-C, Terrones H, Terrones M (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep 3:1755. https://doi.org/10.1038/srep01755

    Article  Google Scholar 

Download references

Funding

Science Foundation Ireland, PI_15/IA/3131, Georg Stefan Duesberg

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katie O’Neill or Georg S. Duesberg.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, K., Greig, R., Tilmann, R. et al. Patterning Functionalized Surfaces of 2D Materials by Nanoshaving. Nanomanuf Metrol 5, 23–31 (2022). https://doi.org/10.1007/s41871-021-00122-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-021-00122-6

Keywords

Navigation