Skip to main content
Log in

Quantum correlation in quark–gluon medium

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study the thermodynamics and quantum correlations of the string cloud geometry whose field theory dual is the quark–gluon medium. We found the novel universality of the entanglement entropy first law in the high quark density limit. We also showed that a correlation function generally decreases as the entanglement entropy of the background medium increases due to the screening effect of the background. We study the UV and IR effects of the medium on phase transition behaviour observed in the holographic mutual information using both perturbative and numerical computations. Moreover, by numerical computation, we show that in the IR region the critical length obtained from the mutual information behaves similar to the correlation length of the two-point function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here, to define the critical length \(l_\mathrm{{c}}\) we only consider the result (33) up to the second order \({{\mathcal {O}}}(l^2)\).

  2. Notice that the the renormalized IR entanglement entropy is independent on the UV cut-off. For a zero string density limit the two-point function (42) reproduces the result (3.34) in [57] exactly.

References

  1. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) (Adv. Theor. Math. Phys. 2, 231(1998)) . arXiv:hep-th/9711200

  2. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    ADS  MathSciNet  Google Scholar 

  3. S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001

    ADS  MathSciNet  Google Scholar 

  4. S. Ryu, T. Takayanagi, JHEP 08, 045 (2006). arXiv:hep-th/0605073

    ADS  Google Scholar 

  5. V.E. Hubeny, M. Rangamani, T. Takayanagi, JHEP 07, 062 (2007). arXiv:0705.0016 [hep-th]

    ADS  Google Scholar 

  6. T. Takayanagi, Class. Quantum Gravity 29, 153001 (2012). arXiv:1204.2450 [gr-qc]

    ADS  Google Scholar 

  7. W. Li, T. Takayanagi, Phys. Rev. Lett. 106, 141301 (2011). arXiv:1010.3700 [hep-th]

    ADS  Google Scholar 

  8. M. Fujita, Y. Hatsuda, T. Takayanagi, JHEP 06, 141 (2011). arXiv:1104.4907 [hep-th]

    ADS  Google Scholar 

  9. N. Ogawa, T. Takayanagi, JHEP 10, 147 (2011). arXiv:1107.4363 [hep-th]

    ADS  Google Scholar 

  10. M. Nozaki, T. Numasawa, A. Prudenziati, T. Takayanagi, Phys. Rev. D 88, 026012 (2013). arXiv:1304.7100 [hep-th]

    ADS  Google Scholar 

  11. M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, Phys. Rev. Lett. 115, 261602 (2015). arXiv:1507.07555 [hep-th]

    ADS  Google Scholar 

  12. J. Molina-Vilaplana, P. Sodano, JHEP 10, 011 (2011). arXiv:1108.1277 [quant-ph]

    ADS  Google Scholar 

  13. A. Allais, E. Tonni, JHEP 01, 102 (2012). arXiv:1110.1607 [hep-th]

    ADS  Google Scholar 

  14. J. Molina-Vilaplana, Nucl. Phys. B 888, 1 (2014). arXiv:1305.1064 [hep-th]

    ADS  MathSciNet  Google Scholar 

  15. D. Mukherjee, K. Narayan, Phys. Rev. D 90, 026003 (2014). arXiv:1405.3553 [hep-th]

    ADS  Google Scholar 

  16. H. Casini, M. Huerta, R.C. Myers, A. Yale, JHEP 10, 003 (2015). arXiv:1506.06195 [hep-th]

    ADS  Google Scholar 

  17. V. Ziogas, JHEP 09, 114 (2015). arXiv:1507.00306 [hep-th]

    ADS  MathSciNet  Google Scholar 

  18. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle, Y. Zhao, Phys. Rev. Lett. 116, 191301 (2016). arXiv:1509.07876 [hep-th]

    ADS  Google Scholar 

  19. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle, Y. Zhao, Phys. Rev. D 93, 086006 (2016). arXiv:1512.04993 [hep-th]

    ADS  MathSciNet  Google Scholar 

  20. A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan, J. Simón, Phys. Rev. Lett. 123, 081601 (2019). arXiv:1903.04511 [hep-th]

    ADS  MathSciNet  Google Scholar 

  21. A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan, J. Simón, (2020). https://doi.org/10.1088/1751-8121/ab8e66. arXiv:2002.05779 [hep-th]

  22. J. Stachel, Phys. Rev. D 21, 2171 (1980)

    ADS  Google Scholar 

  23. S. Chakrabortty, Phys. Lett. B 705, 244 (2011). arXiv:1108.0165 [hep-th]

    ADS  Google Scholar 

  24. S. Chakrabortty, T.K. Dey, JHEP 05, 094 (2016). arXiv:1602.04761 [hep-th]

    ADS  Google Scholar 

  25. C. Park, Phys. Rev. D 101, 126006 (2020). arXiv:2004.08020 [hep-th]

    ADS  MathSciNet  Google Scholar 

  26. B.-H. Lee, C. Park, S.-J. Sin, JHEP 07, 087 (2009). arXiv:0905.2800 [hep-th]

    ADS  Google Scholar 

  27. C. Park, Phys. Rev. D 81, 045009 (2010). arXiv:0907.0064 [hep-ph]

    ADS  Google Scholar 

  28. K. Jo, B.-H. Lee, C. Park, S.-J. Sin, JHEP 06, 022 (2010). arXiv:0909.3914 [hep-ph]

    ADS  Google Scholar 

  29. C. Park, Phys. Lett. B 708, 324 (2012). arXiv:1112.0386 [hep-th]

    ADS  Google Scholar 

  30. C. Park, J. Hun Lee, Int. J. Mod. Phys. A 33, 1850016 (2018). arXiv:1707.05482 [hep-th]

  31. P. Calabrese, J.L. Cardy, J. Stat. Mech. 0406, P06002 (2004). arXiv:hep-th/0405152

    Google Scholar 

  32. C. Park, Phys. Rev. D 92, 126013 (2015). arXiv:1505.03951 [hep-th]

    ADS  MathSciNet  Google Scholar 

  33. C. Park, Phys. Rev. D 93, 086003 (2016). arXiv:1511.02288 [hep-th]

    ADS  MathSciNet  Google Scholar 

  34. S. Kundu, J.F. Pedraza, JHEP 08, 177 (2016). arXiv:1602.07353 [hep-th]

    ADS  Google Scholar 

  35. K.-S. Kim, C. Park, Phys. Rev. D 95, 106007 (2017). arXiv:1610.07266 [hep-th]

    ADS  MathSciNet  Google Scholar 

  36. R. Narayanan, C. Park, Y.-L. Zhang, Phys. Rev. D 99, 046019 (2019). arXiv:1803.01064 [hep-th]

    ADS  MathSciNet  Google Scholar 

  37. C. Park, D. Ro, J. Hun Lee, JHEP 11, 165 (2018). arXiv:1806.09072 [hep-th]

    ADS  Google Scholar 

  38. C. Park, J. Hun Lee, Phys. Rev. D 101, 086008 (2020). arXiv:1910.05741 [hep-th]

  39. C. Park, J.H. Lee, arXiv:2008.04507 [hep-th]

  40. Y. Kim, B.-H. Lee, C. Park, S.-J. Sin, JHEP 09, 105 (2007). arXiv:hep-th/0702131

    ADS  Google Scholar 

  41. T. Takayanagi, K. Umemoto, Nat. Phys. 14, 573 (2018). arXiv:1708.09393 [hep-th]

    Google Scholar 

  42. L. Susskind, E. Witten, (1998). arXiv:hep-th/9805114

  43. V. Balasubramanian, S.F. Ross, Phys. Rev. D 61, 044007 (2000). arXiv:hep-th/9906226

    ADS  MathSciNet  Google Scholar 

  44. J. Louko, D. Marolf, S.F. Ross, Phys. Rev. D 62, 044041 (2000). arXiv:hep-th/0002111

    ADS  MathSciNet  Google Scholar 

  45. V. Balasubramanian, P. Kraus, Phys. Rev. Lett. 83, 3605 (1999). arXiv:hep-th/9903190

    ADS  MathSciNet  Google Scholar 

  46. O. DeWolfe, D.Z. Freedman, (2000). arXiv:hep-th/0002226

  47. J. de Boer, Fortsch. Phys. 49, 339 (2001). arXiv:hep-th/0101026

    ADS  Google Scholar 

  48. M. Bianchi, D.Z. Freedman, K. Skenderis, Nucl. Phys. B 631, 159 (2002). arXiv:hep-th/0112119

    ADS  Google Scholar 

  49. K. Skenderis, Class. Quantum Gravity 19, 5849 (2002). arXiv:hep-th/0209067

    Google Scholar 

  50. M. Headrick, Phys. Rev. D 82, 126010 (2010). arXiv:1006.0047 [hep-th]

    ADS  Google Scholar 

  51. C. Park, (2021). arXiv:2106.05500 [hep-th]

  52. P.S. Letelier, Phys. Rev. D 20, 1294 (1979)

    ADS  MathSciNet  Google Scholar 

  53. G.W. Gibbons, K. Hori, P. Yi, Nucl. Phys. B 596, 136 (2001). arXiv:hep-th/0009061 [hep-th]

    ADS  Google Scholar 

  54. E. Herscovich, M.G. Richarte, Phys. Lett. B 689, 192 (2010). arXiv:1004.3754 [hep-th]

    ADS  MathSciNet  Google Scholar 

  55. J. Bhattacharya, M. Nozaki, T. Takayanagi, T. Ugajin, Phys. Rev. Lett. 110, 091602 (2013). arXiv:1212.1164 [hep-th]

    ADS  Google Scholar 

  56. T. Banks, M.R. Douglas, G.T. Horowitz, E.J. Martinec, (1998). arXiv:hep-th/9808016

  57. W. Fischler, S. Kundu, JHEP 05, 098 (2013). arXiv:1212.2643 [hep-th]

    ADS  Google Scholar 

Download references

Acknowledgements

C. Park was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. NRF-2019R1A2C1006639). J. H. Lee was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. NRF-2021R1C1C2008737).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Hun Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Lee, J.H. Quantum correlation in quark–gluon medium. J. Korean Phys. Soc. 82, 1–11 (2023). https://doi.org/10.1007/s40042-022-00669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00669-7

Keywords

Navigation