Skip to main content
Log in

Computational study of the vibrational characteristics of alpha-helical coiled coils according to structural changes

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Alpha-helix and α-helical coiled coils are important structural motifs in biology. Compared to other structural motifs, these structures have been more comprehensively studied because they can be easily changed using a few simple structural parameters. In this study, various structures of α-helical coiled coils and α-helices were produced by systematically changing their structural parameters including rise per residue, superhelical radius, and superhelical frequency, after which their vibrational characteristics were theoretically investigated. To explore the changes in their infrared spectrum according to their structural variations, vibrational Hamiltonians for the amide I modes were theoretically constructed, and various spectra were calculated for the density of vibrational states, the phase-correlation factor, the inverse participation ratio, and the magnitude of transition dipole moment. This study proposes various relationships between coupling constants, transition dipole moments, and spectra. Moreover, the peak of the infrared spectrum was shifted to a lower frequency as the superhelical frequency decreased and the superhelical radius increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Squire, D.A. Parry, Fibrous protein structures: hierarchy, history and heroes. Subcell. Biochem. 82, 1 (2017)

    Article  Google Scholar 

  2. A.N. Lupas, M. Gruber, The structure of alpha-helical coiled coils. Adv. Protein Chem. 70, 37 (2005)

    Article  Google Scholar 

  3. P. Burkhard, J. Stetefeld, S.V. Strelkov, Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11, 82 (2001)

    Article  Google Scholar 

  4. L. Truebestein, T.A. Leonard, Coiled-coils: the long and short of it. BioEssays 38, 903 (2016)

    Article  Google Scholar 

  5. A.D. McLachlan, M. Stewart, Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. Mol. Biol. 98, 293 (1975)

    Article  Google Scholar 

  6. F.H.C. Crick, The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685 (1953)

    Article  MATH  Google Scholar 

  7. A.N. Lupas, J. Bassler, S. Dunin-Horkawicz, The structure and topology of alpha-helical coiled coils. Subcell. Biochem. 82, 95 (2017)

    Article  Google Scholar 

  8. G. Grigoryan, W.F. Degrado, Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079 (2011)

    Article  Google Scholar 

  9. J.R. Apgar, S. Hahn, G. Grigoryan, A.E. Keating, Cluster expansion models for flexible-backbone protein energetics. J. Comput. Chem. 30, 2402 (2009)

    Article  Google Scholar 

  10. S. Hahn, O. Ashenberg, G. Grigoryan, A.E. Keating, Identifying and reducing error in cluster-expansion approximations of protein energies. J. Comput. Chem. 31, 2900 (2010)

    Google Scholar 

  11. J. Walshaw, D.N. Woolfson, Socket: a program for identifying and analysing coiled-coil motifs within protein structures. J. Mol. Biol. 307, 1427 (2001)

    Article  Google Scholar 

  12. G. Grigoryan, A.E. Keating, Structural specificity in coiled-coil interactions. Curr. Opin. Struct. Biol. 18, 477–483 (2008)

    Article  Google Scholar 

  13. G. Grigoryan, A.W. Reinke, A.E. Keating, Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, 859 (2009)

    Article  ADS  Google Scholar 

  14. F.H. Crick, Is alpha-keratin a coiled coil? Nature 170, 882 (1952)

    Article  ADS  Google Scholar 

  15. F.H.C. Crick, The packing of alpha-helices: simple coiled-coils. Acta Crystallogr. 6, 689 (1953)

    Article  MATH  Google Scholar 

  16. C. Branden, J. Tooze, Introduction to protein structure (Garland, New York, 1999)

    Google Scholar 

  17. A. Barth, Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767, 1073 (2007)

    Article  Google Scholar 

  18. J. Kong, S. Yu, Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 39, 549 (2007)

    Article  Google Scholar 

  19. H. Yang, S. Yang, J. Kong, A. Dong, S. Yu, Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc. 10, 382 (2015)

    Article  Google Scholar 

  20. W.K. Surewicz, H.H. Mantsch, D. Chapman, Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry (Mosc). 32, 389 (1993)

    Article  Google Scholar 

  21. D.M. Byler, H. Susi, Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25, 469 (1986)

    Article  Google Scholar 

  22. S. Krimm, J. Bandekar, Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Prot. Chem. 38, 181 (1986)

    Google Scholar 

  23. T. Heimburg, J. Schuenemann, K. Weber, N. Geisler, Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins. Biochemistry (Mosc). 35, 1375 (1996)

    Article  Google Scholar 

  24. A. Dong, P. Huang, W.S. Caughey, Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry (Mosc). 29, 3303 (1990)

    Article  Google Scholar 

  25. E.S. Manas, Z. Getahun, W.W. Wright, W.F. DeGrado, J.M. Vanderkooi, Infrared spectra of amide groups in alpha-helical proteins: evidence for hydrogen bonding between helices and water. J. Am. Chem. Soc. 122, 9883 (2000)

    Article  Google Scholar 

  26. P. Luo, R.L. Baldwin, Interaction between water and polar groups of the helix backbone: an important determinant of helix propensities. Proc. Natl. Acad. Sci. U. S. A. 96, 4930 (1999)

    Article  ADS  Google Scholar 

  27. R. Iftimie, P. Minary, M.E. Tuckerman, Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. U. S. A. 102, 6654 (2005)

    Article  ADS  Google Scholar 

  28. S. Yang, M. Cho, Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: quantum mechanical/molecular mechanical molecular dynamics simulations. J. Chem. Phys. 131, 135102 (2009)

    Article  ADS  Google Scholar 

  29. J.H. Choi, H. Lee, K.K. Lee, S. Hahn, M. Cho, Computational spectroscopy of ubiquitin: comparison between theory and experiments. J. Chem. Phys. 126, 045102 (2007)

    Article  ADS  Google Scholar 

  30. S. Hahn, H. Lee, M. Cho, Theoretical calculations of infrared absorption, vibrational circular dichroism, and two-dimensional vibrational spectra of acetylproline in liquids water and chloroform. J. Chem. Phys. 121, 1849 (2004)

    Article  ADS  Google Scholar 

  31. S. Ham, S. Hahn, C. Lee, T.K. Kim, K. Kwak, M. Cho, Amide I modes of alpha-helical polypeptide in liquid water: conformational fluctuation, phase correlation, and linear and nonlinear vibrational spectra. J. Phys. Chem. B 108, 9333 (2004)

    Article  Google Scholar 

  32. F.M.G. Pearl, Protein structural analysis: alpha-helices and their interactions, Ph.D Thesis, University of London (1998)

  33. O.D. Testa, E. Moutevelis, D.N. Woolfson, CC+: a relational database of coiled-coil structures. Nucleic Acids Res 37, D315 (2009)

    Article  Google Scholar 

  34. B. Haimov, S. Srebnik, A closer look into the alpha-helix basin. Sci Rep 6, 38341 (2016)

    Article  ADS  Google Scholar 

  35. P.J. Artymiuk, C.C. Blake, Refinement of human lysozyme at 1.5 A resolution analysis of non-bonded and hydrogen-bond interactions. J. Mol. Biol. 152, 737 (1981)

    Article  Google Scholar 

  36. D.J. Barlow, J.M. Thornton, Helix geometry in proteins. J. Mol. Biol. 201, 601 (1988)

    Article  Google Scholar 

  37. S. Arnott, S.D. Dover, Refinement of bond angles of an alpha-helix. J. Mol. Biol. 30, 209 (1967)

    Article  Google Scholar 

  38. D.A. Case, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, I.T.E. Cheatham, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K. Gilson, H. Gohlke, A.W. Goetz, R. Harris, S. Izadi, K. Kasava-jhala, A. Kovalenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao, O. Mikhailovskii, G. Monard, H. Nguyen, A. Onufriev, F. Pan, S. Pantano, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, N. Skrynnikov, J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu, D.M. York, P.A. Kollman, AMBER 2020 (University of California, San Francisco, 2020)

    Google Scholar 

  39. J.A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K.E. Hauser, C. Simmerling, ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696 (2015)

    Article  Google Scholar 

  40. S. Hahn, Effective representation of amide III, II, I, and A modes on local vibrational modes: analysis of ab initio quantum calculation results. J. Chem. Phys. 145, 164113 (2016)

    Article  ADS  Google Scholar 

  41. F.S. Husseini, D. Robinson, N.T. Hunt, A.W. Parker, J.D. Hirst, Computing infrared spectra of proteins using the exciton model. J. Comput. Chem. 38, 1362 (2017)

    Article  Google Scholar 

  42. S. Ham, S. Cha, J.H. Choi, M. Cho, Amide I modes of tripeptides: Hessian matrix reconstruction and isotope effects. J. Chem. Phys. 119, 1451 (2003)

    Article  ADS  Google Scholar 

  43. S. Cha, S. Ham, M. Cho, Amide I vibrational modes in glycine dipeptide analog: Ab initio calculation studies. J. Chem. Phys. 117, 740 (2002)

    Article  ADS  Google Scholar 

  44. J.H. Choi, S. Ham, M. Cho, Inter-peptide interaction and delocalization of amide I vibrational excitons in myoglobin and flavodoxin. J. Chem. Phys. 117, 6821 (2002)

    Article  ADS  Google Scholar 

  45. S. Ham, M. Cho, Amide I modes in the N-methylacetamide dimer and glycine dipeptide analog: diagonal force constants. J. Chem. Phys. 118, 6915 (2003)

    Article  ADS  Google Scholar 

  46. S. Krimm, Y. Abe, Intermolecular interaction effects in the amide I vibrations of polypeptides. Proc. Natl. Acad. Sci. U. S. A. 69, 2788 (1972)

    Article  ADS  Google Scholar 

  47. J.D. Jackson, Classical electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  48. W.H. Moore, S. Krimm, Transition dipole coupling in Amide I modes of betapolypeptides. Proc. Natl. Acad. Sci. U. S. A. 72, 4933 (1975)

    Article  ADS  Google Scholar 

  49. H. Torii, M. Tasumi, Model-calculations on the amide-I infrared bands of globular-proteins. J. Chem. Phys. 96, 3379 (1992)

    Article  ADS  Google Scholar 

  50. S. Hahn, S. Ham, M. Cho, Simulation studies of amide I IR absorption and two-dimensional IR spectra of beta hairpins in liquid water. J. Phys. Chem. B 109, 11789 (2005)

    Article  Google Scholar 

  51. G.E. Schulz, R.H. Schirmer, Principles of protein structure (Springer-Verlag, New York, 1979)

    Book  Google Scholar 

  52. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry (WH Freeman and Company, New York, 2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of the Korean government (NRF-2017R1D1A1B03028457) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2020R1A2C1102741)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungsoo Hahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 248 KB)

Supplementary file2 (TIF 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, S. Computational study of the vibrational characteristics of alpha-helical coiled coils according to structural changes. J. Korean Phys. Soc. 81, 1280–1293 (2022). https://doi.org/10.1007/s40042-022-00652-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00652-2

Keywords

Navigation