Skip to main content
Log in

S-parameter measurement-based asymmetric surface acoustic wave interdigital transducer characterization

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

SAW (surface acoustic wave) resonators using asymmetrical interdigital transducers (IDTs) are experimentally characterized and its physical characteristics are modeled in terms of layout dimensions. It is shown that since the acoustic waves within a piezoelectrical material can be modulated by exploiting asymmetrical IDT layout variations, the physical characteristics of a SAW resonator (e.g., energy loss and out-of-band rejection characteristics) can be considerably improved. Test patterns for experimental characterizations are designed and fabricated with a LiTaO3 piezoelectric substrate. Then S-parameters are measured in a broad frequency band (50 MHz–6.05 GHz). The physical characteristics of an asymmetrical SAW IDT structure are represented with a metallization factor (\(\xi_{i}\)) that indicates how much area the metal occupies within IDTs. Thereby, SAW-based microwave components can be designed efficiently with the asymmetrical IDT structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Wu et al., in Proc. IEEE International Ultrasonics Symposium (2021), p. 1.

  2. J. Liu et al., in Proc. IEEE International Ultrasonics Symposium (2021), p. 1.

  3. Y. Yang, L. Gao and S. Gong, in Proc. IEEE International Ultrasonics Symposium (2021), p. 1.

  4. T. Takai et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 64, 1382 (2017)

    Article  Google Scholar 

  5. T. Kimura et al., in Proc. IEEE International Ultrasonics Symposium (2019), p. 1239.

  6. C.K. Campbell, Surface acoustic wave devices for mobile wireless communications (Academic, New York, 1998)

    Google Scholar 

  7. P. Matthews, Approaching the 5G mmWave Filter Challenge [Internet]. https://www.microwavejournal.com/articles/32228-approaching-the-5g-mmwave-filter-challenge

  8. R. Aigner, in Proc IEEE Ultrasonics Symposium, (2008), pp. 582–589.

  9. J. Koskela et al., IEEE Trans. Ultrason. Ferroelectr. Freq., 48, no. 6, (2001), pp. 1517–1526.

  10. V. Yantchev, V. Plessky, J. Appl. Phys. 114, 074902 (2013)

    Article  ADS  Google Scholar 

  11. T. Takai et al., IEEE Trans. Ultrason. Ferroelectr. Freq., 66, no. 5, (2019), pp. 1006–1013.

  12. T. Kimura et al., Jpn. J. Appl. Phys. 52 07HD03 (2013)

  13. M. Kadota and S. Tanaka, in Proc. IEEE International Ultrasonics Symposium, (2017), pp. 1–4.

  14. M. Kadota et al., in Proc. IEEE International Frequency Control Symposium, (2018), pp. 1–4.

  15. T. Takai et al., in Proc. IEEE International Ultrasonics Symposium, (2017), pp. 1–4. IEEE.

  16. T. Takai et al., IEEE Trans. Ultrason. Ferroelectr. Freq., (2017), pp. 1382–1389.

  17. T. Takai et al., in Proc. IEEE International Ultrasonics Symposium, (2017), pp. 1–8.

  18. C. Lin et al., in Proc. IEEE Ultrasonics Symposium (2010), pp. 1696–1699

  19. O. Mortada et al., J. Appl. Phys. 121, 074504 (2017)

    Article  ADS  Google Scholar 

  20. D. Feld, R. Parker, and R. Ruby, in Proc. Ultrasonics Symposium (2008), pp. 1815–1818.

  21. R. Ruby, R. Parker, and D. Feld, in Proc. IEEE Ultrasonics Symposium, (2008), pp. 431–436.

  22. B.K. Sinha et al., J. Appl. Phys. 57, 767 (1985)

    Article  ADS  Google Scholar 

  23. Anritsu, ShockLinTMMS46122A/B Series Compact Vector Network Analyzer. (2021). [Online]. Available: https://dl.cdn-anritsu.com/en-us/test-measurement/files/Manuals/Operation-Manual/10410-00340R.pdf

  24. P. J. van Wijnen, H. R. Classen, and E. A. Wolsheimer, in Proc. IEEE Bipolar Circuits and Technology Meeting, (1987), pp. 70–73.

  25. B.A. Auld, Acoustic fields and waves in solids (Wiley, New York, 1973)

    Google Scholar 

  26. G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (NJ: Prentice-Hall, Englewood Cliffs, 1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungseon Eo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, M., Yoo, H. & Eo, Y. S-parameter measurement-based asymmetric surface acoustic wave interdigital transducer characterization. J. Korean Phys. Soc. 81, 629–635 (2022). https://doi.org/10.1007/s40042-022-00552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00552-5

Keywords

Navigation