Skip to main content
Log in

High-frequency characterization for SAW interdigital transducers

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A new technique to accurately determine transmission line (TL) network parameters of surface acoustic wave (SAW) interdigital transducers (IDTs) is presented. Various test IDTs and radio frequency (RF) filters for experimental characterizations are designed and fabricated on a LiTaO3 piezoelectric material. S-parameters for test devices were measured in the broad frequency bands of 50 MHz to 6 GHz. Then decoupling the acoustic waves from electromagnetic waves with an electro-mechanical coupling coefficient (\(k^{2}\)), accurate TL circuit model parameters for SAW devices are determined. The acoustic wave model parameters are determined in an iterative manner by combining the measured S-parameters with a physical model. We show that SAW-based RF filters that operate at the frequency higher than 1 GHz can be very accurately designed using the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Wu, Y. Wong, Y. He, C. Peng, J. Bao and K. Hashimoto, in Proc. IEEE International Ultrasonics Symposium, pp. 1–4 (2021)

  2. J. Liu, X. Tong, J. Zhou, Y. Liu, W. Liu, Y. Cai and C. Sun, in Proc. IEEE International Ultrasonics Symposium, pp. 1–3 (2021)

  3. Y. Yang, L. Gao and S. Gong, in Proc. IEEE International Ultrasonics Symposium, pp 1–4 (2021)

  4. O. L. Balysheva, in Proc. Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), pp. 1–5 (2021)

  5. S. Mahon, IEEE Trans. Semicond. Manuf. 30, 494 (2017)

    Article  Google Scholar 

  6. C.C.W. Ruppel, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 64, 1390 (2017)

    Article  Google Scholar 

  7. T. Takai, H. Iwamoto, Y. Takamine, H. Yamazaki, T. Fuyutsume, H. Kyoya, T. Nakao, H. Kando, M. Hiramoto, T. Toi, M. Koshino, N. Nakajima, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 64, 1382 (2017)

    Article  Google Scholar 

  8. T. Kimura, M. Omura, Y. Kishimoto, H. Kyoya, M. Mimura, H. Okunaga and K. Hashimoto, in Proc. IEEE International Ultrasonics Symposium, pp. 1239–1248 (2019)

  9. F. Z. Bi and B. P. Barber, in Proc. IEEE International Ultrasonics Symposium, pp. 1025–1028 (2007)

  10. T. Pensala, R. Thalhammer, J. Dekker, J. Kaitila, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 56, 2544 (2009)

    Article  Google Scholar 

  11. C. Elachi, in Proc. the IEEE, vol. 64, pp. 1666–1698 (1976)

  12. V. Plessky, Int. J. High Speed Electr. Syst. 10, 867 (2000)

    Article  Google Scholar 

  13. B.A. Auld, Acoustic Fields and Waves in Solids (Krieger, FL, Malabar, 1990)

    Google Scholar 

  14. W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, IEEE Trans. Microw. Theory Tech. 17, 856 (1969)

  15. G.S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, 1987)

    Google Scholar 

  16. K. Yamanouchi and M. Takeuchi, in Proc. IEEE International Ultrasonics Symposium, pp. 11–18 (1990)

  17. C.K. Campbell, Surface Acoustic Wave Devices for Mobile Wireless Communications (Academic Press, New York, 1998)

    Google Scholar 

  18. C. Dunnrowicz, F. Sandy, and T. Parker, in Proc. IEEE International Ultrasonics Symposium, pp. 386–390 (1976)

  19. O. Ikata, T. Miyashita, T. Matsuda, T. Nishihara and Y. Satoh, in Proc. IEEE International Ultrasonics Symposium, pp. 111–115 (1992)

  20. MATLAB R2020b (2020). Mathworks.

  21. Y. Satoh, O. Ikata, T. Miyashita, T. Matsuda, T. Nishihara, Electr. and Comm. in Jpn. 76, 52 (1993)

    Article  Google Scholar 

  22. Anritsu, ShockLineTM MS46122A/B Series Compact Vector Network Analyzer. (2022). [Online]. Available: https://dl.cdn-anritsu.com/en-us/test-measurement/files/Manuals/Operation-Manual/10410-00340T.pdf

  23. P. J. van Wijnen, H. R. Classen and E. A. Wolsheimer, in Proc. IEEE Bipolar Circuits and Technology Meeting (BCTM), pp. 70–73 (1987)

  24. O. Kawachi, S. Mineyoshi, G. Endoh, M. Ueda, O. Ikata, K. Hashimoto, M. Yamaguchi, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 48, 1442 (2001)

    Article  Google Scholar 

  25. S. Lin, K. Lin, S. Chiu and C. Chen, in Proc. IEEE International Ultrasonics Symposium, vol 2, pp. 2089–2092 (2003)

  26. P. Warder, A. Link, IEEE Micro. Magazine 16, 60 (2015)

    Google Scholar 

  27. J. Kushibiki, I. Takanaga, M. Arakawa, T. Sannomiya, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 46, 1315 (1999)

    Article  Google Scholar 

  28. N.R. Skov, P. Sehgal, B.J. Kirby, H. Bruus, Phys. Rev. Applied 12, 044028 (2019)

    Article  ADS  Google Scholar 

  29. D. Mandal, S. Banerjee, Sensors 22, 820 (2022)

    Article  ADS  Google Scholar 

  30. G. Chung, D. Phan, J. Korean Phys. Soc. 57, 446 (2010)

    Article  ADS  Google Scholar 

  31. V. Yantchev, P. Turner and V. Plessky, in Proc. IEEE International Ultrasonics Symposium, pp. 1–4 (2016)

  32. H. Zhang, H. Wang, Micromachines 12, 1286 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-2019R1F1A1056951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungseon Eo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Yoo, H., Seong, M. et al. High-frequency characterization for SAW interdigital transducers. J. Korean Phys. Soc. 81, 954–964 (2022). https://doi.org/10.1007/s40042-022-00613-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00613-9

Keywords

Navigation