Skip to main content
Log in

Local pattern growth of carbon nanomaterials on flexible polyimide films using laser scribing and its sensor application

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A gas detection system that monitors harmful gases is critical for the preservation of the global environment and human health. Owing to the increased interest in flexible devices for various types of wearable applications as future electronics, the development of materials and substrates for flexible gas sensing platforms has also accelerated significantly. In this regard, carbon nanomaterials have been extensively investigated as gas sensing materials due to their superior physicochemical properties, gas adsorption/desorption behavior, and conductivity due to their high specific surface area. However, they are difficult to apply as flexible devices because the high-temperature heat treatment is inefficient in terms of cost and process time, and the prepared materials become rigid after carbonization. As a result, we used a laser-assisted chemical vapor deposition (CVD) system in this study to fabricate laser-scribed carbon nanomaterials (LSC) for flexible gas sensor applications at a lower cost and in a shorter time frame than conventional high-temperature heat treatment approaches. A polyimide (PI) film was used as the carbonization precursor and substrate, resulting in the fabrication of a flexible sensor without the use of a carbon nanomaterial separation process after synthesis. The synthesized material has a stereoscopic 3D structure, which is advantageous for sensing target gas, and responds to polarized molecules such as acetone, nitrogen dioxide, and ammonia by changing its electrical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B Chem. 140, 319 (2009). https://doi.org/10.1016/J.SNB.2009.04.026

    Article  Google Scholar 

  2. L. Wang, Z. Lou, T. Fei, T. Zhang, Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties. J. Mater. Chem. 22, 4767 (2012). https://doi.org/10.1039/c2jm15342d

    Article  Google Scholar 

  3. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009). https://doi.org/10.1038/nature07719

    Article  ADS  Google Scholar 

  4. Y. Il Ko, Y.M. Ha, T. Hayashi, Y.A. Kim, C.M. Yang, J. Kim, M. Endo, Y.C. Jung, Flexible transparent conducting films composed of photochemically oxidized thin multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 16, 11980 (2016). https://doi.org/10.1166/jnn.2016.13629

    Article  Google Scholar 

  5. R. Alrammouz, J. Podlecki, P. Abboud, B. Sorli, R. Habchi, A review on flexible gas sensors: from materials to devices. Sens Actuators A Phys. 284, 209 (2018). https://doi.org/10.1016/J.SNA.2018.10.036

    Article  Google Scholar 

  6. P. Kuberský, T. Syrový, A. Hamacek, S. Nešpůrek, J. Stejskal, Printed flexible gas sensors based on organic materials. Procedia Eng. 120, 614 (2015). https://doi.org/10.1016/J.PROENG.2015.08.746

    Article  Google Scholar 

  7. Z. Xiao, L.B. Kong, S. Ruan, X. Li, S. Yu, X. Li, Y. Jiang, Z. Yao, S. Ye, C. Wang, Recent development in nanocarbon materials for gas sensor applications. Sens Actuators B Chem. 274, 235 (2018)

    Article  Google Scholar 

  8. C. Wang, Y. Wang, Z. Yang, N. Hu, Review of recent progress on graphene-based composite gas sensors. Ceram. Int. 47, 16367 (2021). https://doi.org/10.1016/J.CERAMINT.2021.02.144

    Article  Google Scholar 

  9. Y. Ko, G. Lee, M.J. Kim, D.Y. Lee, J. Nam, A.-R. Jang, J.-O. Lee, K.S. Kim, Direct pattern growth of carbon nanomaterials by laser scribing on spin-coated Cu-PI composite films and their gas sensor application. Mater. 14, 3388 (2021). https://doi.org/10.3390/MA14123388

    Article  Google Scholar 

  10. Y. Il Ko, M.J. Kim, D.Y. Lee, J. Nam, A.R. Jang, J.O. Lee, K.S. Kim, Fabrication of carbon nanomaterials using laser scribing on copper nanoparticles-embedded polyacrylonitrile films and their application in a gas sensor. Polymers (Basel) (2021). https://doi.org/10.3390/polym13091423

    Article  Google Scholar 

  11. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nat. 457, 706 (2009). https://doi.org/10.1038/nature07719

    Article  ADS  Google Scholar 

  12. V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, A. Ullah Khan, Graphene synthesis, characterization and its applications: a review. Results Chem. 3, 100163 (2021). https://doi.org/10.1016/J.RECHEM.2021.100163

    Article  Google Scholar 

  13. J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan, X. Wei, G. Zhang, Z. Ma, X. He, Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon N. Y. 158, 45 (2020). https://doi.org/10.1016/J.CARBON.2019.11.075

    Article  Google Scholar 

  14. D.Y. Lee, N.A.M. Jungtae, K.S. Kim, Pattern synthesis of designed graphene by using a LASER Scribing. New Physics 69, 590 (2019). https://doi.org/10.3938/NPSM.69.590

    Article  Google Scholar 

  15. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour, Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5, 5 (2014). https://doi.org/10.1038/ncomms6714

    Article  Google Scholar 

  16. X. Ruan, R. Wang, J. Luo, Y. Yao, T. Liu, Experimental and modeling study of CO2 laser writing induced polyimide carbonization process. Mater. Des. 160, 1168 (2018). https://doi.org/10.1016/J.MATDES.2018.10.050

    Article  Google Scholar 

  17. M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita, Carbonization of polyimide film “Kapton.” Carbon N. Y. 27, 253 (1989)

    Article  Google Scholar 

  18. T. Takeichi, Y. Eguchi, Y. Kaburagi, Y. Hishiyama, M. Inagaki, Carbonization and graphitization of Kapton-type polyimide films prepared from polyamide alkyl ester. Carbon N. Y. 36, 117 (1998)

    Article  Google Scholar 

  19. M. Inagaki, L.-J. Meng, T. Ibuki, M. Sakai, Y. Hishiyama, Carbonization and graphitization of polyimide film “Novax.” Carbon N. Y. 29, 1239 (1991)

    Article  Google Scholar 

  20. M.S. Dresselhaus, G. Dresselhaus, M. Hofmann, Raman spectroscopy as a probe of graphene and carbon nanotubes. Philos Trans R Soc A Math Phys Eng Sci. 366, 231 (2008). https://doi.org/10.1098/rsta.2007.2155

    Article  ADS  Google Scholar 

  21. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47 (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Article  ADS  Google Scholar 

  22. L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc. 74, 57 (2014). https://doi.org/10.1016/j.vibspec.2014.07.009

    Article  Google Scholar 

  23. N. Khomiakova, J. Hanuš, A. Kuzminova, O. Kylián, Investigation of wettability, drying and water condensation on polyimide (Kapton) films treated by atmospheric pressure air dielectric barrier discharge. Coatings 10, 619 (2020). https://doi.org/10.3390/COATINGS10070619

    Article  Google Scholar 

  24. J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang, Z. Luo, S. Feng, C. Du, D. Chen, J. Miao, A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4, 1600319 (2017). https://doi.org/10.1002/advs.201600319

    Article  Google Scholar 

  25. S. Wang, J. Yang, H. Zhang, Y. Wang, X. Gao, L. Wang, Z. Zhu, One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor. Sens Actuators B Chem. 207, 83 (2015). https://doi.org/10.1016/j.snb.2014.10.032

    Article  Google Scholar 

  26. Z. Xiao, L.B. Kong, S. Ruan, X. Li, S. Yu, X. Li, Y. Jiang, Z. Yao, S. Ye, C. Wang, T. Zhang, K. Zhou, S. Li, Recent development in nanocarbon materials for gas sensor applications. Sens Actuators B Chem. 274, 235 (2018). https://doi.org/10.1016/J.SNB.2018.07.040

    Article  Google Scholar 

  27. M. Mittal, A. Kumar, Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens Actuators B Chem. 203, 349 (2014). https://doi.org/10.1016/j.snb.2014.05.080

    Article  Google Scholar 

  28. Z. Ben Aziza, Q. Zhang, D. Baillargeat, Graphene/mica based ammonia gas sensors. Appl. Phys. Lett. Doi 10(1063/1), 4905039 (2014)

    Google Scholar 

  29. D.W. Kim, S. Ha, Y. Il Ko, J.H. Wee, H.J. Kim, S.Y. Jeong, T. Tojo, C.M. Yang, Y.A. Kim, Rapid, repetitive and selective NO2 gas sensor based on boron-doped activated carbon fibers. Appl. Surf. Sci. 531, 147395 (2020). https://doi.org/10.1016/j.apsusc.2020.147395

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korea government (MSIT) (No. 2019R1A2C1009963). And also this research supported by Global Research Development Center Program (No. 2018K1A4A3A01064272) and Basic Science Research Program (No. 2021R1A4A1031900) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-il Ko or Keun Soo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 421 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, Yi., Kim, M.J., Lee, D.Y. et al. Local pattern growth of carbon nanomaterials on flexible polyimide films using laser scribing and its sensor application. J. Korean Phys. Soc. 81, 330–337 (2022). https://doi.org/10.1007/s40042-022-00551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00551-6

Keywords

Navigation