Skip to main content
Log in

Improvement of three-material decomposition in spectral mammography with a photon-counting detector

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The accurate analysis of breast imaging is important because it has been reported that an increase in breast density of only 1% results in a 2% increase in the relative risk of breast cancer. The proteins, water, and lipids that determine breast density are important biomarkers in the diagnosis of breast cancer. In mammography, photon-counting detectors (PCDs) with energy-discrimination capabilities can cause errors in the measurement of chemical composition when the attenuation coefficient is small. This is typically the case with proteins, water, and lipids because of the low photon efficiency in each bin. In this study, a dual-energy technique for PCDs was developed based on a non-local means denoising technique for accurate material decomposition and the quantification of protein, water, and lipid content. To evaluate the proposed material decomposition algorithm, spectral images were acquired with a modeled PCD using the Geant4 Application for Tomographic Emission (GATE) version 6.0. Linear, quadratic, and rational models were used for three-material decomposition based on the spectral images acquired using the PCD. The proposed algorithm yielded the best results for the estimation of breast density, composed of three materials. It was determined that the developed approach improved the accuracy of three-material decomposition using a PCD with energy-discrimination capabilities. The presented material decomposition algorithm has the potential to improve the diagnostic accuracy of breast cancer detection based on the quantitative measurement of breast density using PCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Boone, K.K. Lindfors, J.A. Seibert and T.R. Nelson, in Digital mammography: IWDM 2002—6th International Workshop on Digital Mammography, edited by H.-O. Peitgen (Bremen, Germany, June 22–25, 2002)

  2. R.L. Siegel, K.D. Miller, A. Jemal, CA-Cancer J. Clin. 67, 7 (2017)

    Article  Google Scholar 

  3. U. Veronesi, N. Cascinelli, L. Mariani, M. Greco, R. Saccozzi, A. Luini, E. Marubini, New Engl. J Med. 347, 1227 (2002)

    Article  Google Scholar 

  4. A.M. Leitch, G.D. Dodd, M. Costanza, M. Linver, P. Pressman, L. McGinnis, R.A. Smith, CA-Cancer J. Clin. 47, 150 (1997)

    Article  Google Scholar 

  5. N.F. Boyd, J.M. Rommens, K. Vogt, V. Lee, J.L. Hopper, M.J. Yaffe, A.D. Paterson, Lancet Oncol. 6, 798 (2005)

    Article  Google Scholar 

  6. H.Q. Woodard, D.R. White, Brit. J. Radiol. 59, 1209 (1986)

    Article  Google Scholar 

  7. B.M. Keller, D.L. Nathan, Y. Wang, Y. Zheng, J.C. Gee, E.F. Conant, D. Kontos, Med. Phys. 39, 4903 (2012)

    Article  Google Scholar 

  8. A.D. Laidevant, S. Malkov, C.I. Flowers, K. Kerlikowske, J.A. Shepherd, Med. Phys. 37, 164 (2010)

    Article  Google Scholar 

  9. A. Arodzero, W.C. Barber, M.Q. Damron, N.E. Hartsough, J.S. Iwanczyk, N. Malakhov, P. Jarron, in IEEE Nuclear Science Symposium Conference 2006, edited by Bernard Phlips (San Diego, Oct. 29–Nov. 4, 2006)

  10. R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, W. Wong, Nucl. Instrum. Meth. A 633, S15 (2011)

    Article  ADS  Google Scholar 

  11. H. Bornefalk, M. Danielsson, Phys. Med. Biol. 55, 1999 (2010)

    Article  Google Scholar 

  12. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, D. Brasse, Phys. Med. Biol. 49, 4543 (2004)

    Article  Google Scholar 

  13. R. Taschereau, P.L. Chow, A.F. Chatziioannou, Med. Phys. 33, 216 (2006)

    Article  Google Scholar 

  14. J.H. Siewerdsen, A.M. Waese, D.J. Moseley, S. Richard, D.A. Jaffray, Med. Phys. 31, 3057 (2004)

    Article  Google Scholar 

  15. A. Sisniega, M. Desco, J.J. Vaquero, Med. Phys. 41, 011902 (2014)

    Article  Google Scholar 

  16. S.B. Heymsfield, M. Waki, J. Kehayias, S. Lichtman, F.A. Dilmanian, Y.A.K.O.V. Kamen, R.N. Pierson Jr., Am. J. Physiol-Endoc. M. 261, E190 (1991)

    Google Scholar 

  17. S.C. Kappadath, C.C. Shaw, Med. Phys. 30, 1110 (2003)

    Article  Google Scholar 

  18. A. Buades, B. Coll, and J.M. Morel, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, edited by C. Schmid, S. Soatto and C. Tomasi (San Diego, USA, June 20–25 2005)

  19. J.A. Harvey, V.E. Bovbjerg, Radiology 230, 29 (2004)

    Article  Google Scholar 

  20. S. Leschka, P. Stolzmann, F.T. Schmid, H. Scheffel, B. Stinn, B. Marincek, S. Wildermuth, Eur. Radiol. 18, 1809 (2008)

    Article  Google Scholar 

  21. G. Geronimo, A. Dragone, J., Grosholz, P. O'Connor, and E. Vernon, in IEEE Nuclear Science Symposium Conference 2006, edited by Bernard Phlips (San Diego, Oct. 29–Nov. 4, 2006)

  22. C.R. Vogel, M.E. Oman, Siam J. Sci. Comput. 17, 227 (1996)

    Article  MathSciNet  Google Scholar 

  23. M.C. Veale, S.J. Bell, D.D. Duarte, A. Schneider, P. Seller, M.D. Wilson, K. Iniewski, Nucl. Instrum. Meth. A 767, 218 (2014)

    Article  ADS  Google Scholar 

  24. K. Taguchi, E.C. Frey, X. Wang, J.S. Iwanczyk, W.C. Barber, Med. Phys. 37, 3957 (2010)

    Article  Google Scholar 

  25. P.V. Granton, S.I. Pollmann, N.L. Ford, M. Drangova, D.W. Holdsworth, Med. Phys. 35, 5030 (2008)

    Article  Google Scholar 

  26. P.R. Mendonça, R. Bhotika, M. Maddah, B. Thomsen, S. Dutta,P.E. Licato, and M.C. Joshi, in Medical Imaging 2010: Physics of Medical Imaging, edited by E. Samei and N.J. Pelc (San Diego, USA, Feb. 15–18 2010)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1075741) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1I1A1A01059875) and Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 1711137897, KMDF_PR_20200901_0014) and Technology Innovation Program (20014111, Development of a mobile hybrid CT system based on an ultra-low dose (140 \(\times\) 140 μm2) imaging solution of 25mGy or less) Funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (G032579811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyemi Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Kim, H. Improvement of three-material decomposition in spectral mammography with a photon-counting detector. J. Korean Phys. Soc. 81, 91–100 (2022). https://doi.org/10.1007/s40042-022-00500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00500-3

Keywords

Navigation