Skip to main content
Log in

Dynamical prediction of two meteorological factors using the deep neural network and the long short-term memory (ΙΙ)

  • Original Paper - General, Mathematical and Statistical Physics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper presents the predictive accuracy using two-variate meteorological factors, average temperature and average humidity, in neural network algorithms. We analyze result in five learning architectures such as the traditional artificial neural network, deep neural network, and extreme learning machine, long short-term memory, and long-short-term memory with peephole connections, after manipulating the computer simulation. Our neural network modes are trained on the daily time-series dataset during 7 years (from 2014 to 2020). From the trained results for 2500, 5000, and 7500 epochs, we obtain the predicted accuracies of the meteorological factors produced from outputs in ten metropolitan cities (Seoul, Daejeon, Daegu, Busan, Incheon, Gwangju, Pohang, Mokpo, Tongyeong, and Jeonju). The error statistics is found from the result of outputs, and we compare these values to each other after the manipulation of five neural networks. As using the long-short-term memory model in testing 1 (the average temperature predicted from the input layer with six input nodes), Tonyeong has the lowest root-mean-squared error (RMSE) value of 0.866 (%) in summer from the computer simulation to predict the temperature. To predict the humidity, the RMSE is shown the lowest value of 5.732 (%), when using the long short-term memory model in summer in Mokpo in testing 2 (the average humidity predicted from the input layer with six input nodes). Particularly, the long short-term memory model is found to be more accurate in forecasting daily levels than other neural network models in temperature and humidity forecastings. Our result may provide a computer simulation basis for the necessity of exploring and developing a novel neural network evaluation method in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.D. Jones, T.J. Osborn, K.R. Briffa, Science 292, 662 (2001)

    Article  ADS  Google Scholar 

  2. P. Lynch, J. Comput. Phys. 227, 3431 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Chen, H. Gong, Y. Chen, X. Li, C. Zhou, K. Lei, L. Zhu, L. Duan, X. Zhao, Sci. Total Environ. 735, 139111 (2020)

    Article  ADS  Google Scholar 

  4. J.M. Wallace, E.M. Rasmusson, T.P. Mitchell, V.E. Kousky, E.S. Sarachik, H. von Storch, J. Geophys. Res. 103(C7), 14241 (1998)

    Article  ADS  Google Scholar 

  5. M. Latif, D. Anderson, T.P. Barnett, M.A. Cane, R. Kleeman, A. Leetmaa, J. Geophys. Res. 103, 14375 (1998)

    Article  ADS  Google Scholar 

  6. A.G. Barnston, C.F. Ropelewski, J. Clim 5, 1316 (1992)

    Article  ADS  Google Scholar 

  7. A. Wu, W.W. Hsieh, B. Tang, Neural Netw. 19, 145 (2006)

    Article  Google Scholar 

  8. A.G. Barnston, H.M. van den Dool, S.E. Zebiak, T.P. Barnett, M. Ji, D.R. Rodenhuis, Bull. Am. Meteor. Soc. 75, 2097 (1994)

    Article  ADS  Google Scholar 

  9. P. Mehta, C.H. Wang, A.G.R. Day, C. Richardson, arXiv preprint arXiv: http://arxiv.org/abs/1803.08823v3

  10. N.K. Chauhan, K. Singh, 2018 International Conference on Computing, Power and Communication Technologies (GUCON) (2018), pp. 347–352

  11. S.B. Kotsiantis, Informatica 31, 249 (2007)

    MathSciNet  Google Scholar 

  12. R. Muthukrishnan, R. Rohini, IEEE International Conference on Advances in Computer Applications (ICACA) (2016), pp. 18–20

  13. W. Lai, M. Zhou, F. Hu, K. Bian, Q. Song, IEEE Access 7, 104085 (2019)

    Article  Google Scholar 

  14. C. Ding, X. He, Proceedings of the 21st International Conference on Machine Learning (2004), pp. 29–36

  15. K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, The Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT) (2014), pp. 232–238

  16. J.I. Glasera, A.S. Benjamin, R. Farhoodi, K.P. Kording, Prog. Neurobiol. 175, 126 (2019)

    Article  Google Scholar 

  17. D. Silver et al., Nature 529, 484 (2016)

    Article  ADS  Google Scholar 

  18. W.S. McCulloch, W. Pitts, Bull. Math. Biol. 52, 99 (1990)

    Article  Google Scholar 

  19. F. Rosenblatt, Psych. Rev. 65, 386 (1958)

    Article  Google Scholar 

  20. D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory, 1st edn. (Psychology Press, Hove, 2002)

    Google Scholar 

  21. M. Minsky, S.A. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, Cambridge, 1969)

    MATH  Google Scholar 

  22. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal Representations by Error Propagation (MIT Press, Cambridge, 1986), pp. 318–362

    Google Scholar 

  23. W.A. Little, Math. Biosci. 19, 101 (1974)

    Article  Google Scholar 

  24. J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.J. Hopfield, Proc. Natl. Acad. Sci. USA 81, 3088 (1984)

    Article  ADS  Google Scholar 

  26. D.J. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. A 32, 1007 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. D.J. Amit, H. Gutfreund, H. Sompolinsky, Phys. Rev. Lett. 55, 1530 (1985)

    Article  ADS  Google Scholar 

  28. P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Ph. D Thesis of Harvard University (1974)

  29. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323, 533 (1986)

    Article  ADS  Google Scholar 

  30. C.M. Bishop, Rev. Sci. Instrum. 65, 1803 (1994)

    Article  ADS  Google Scholar 

  31. J.L. Elman, Cong. Sci. 14, 179 (1990)

    Google Scholar 

  32. S. Hochreiter, J. Schmidhuber, Neural Comput. 9, 1735 (1997)

    Article  Google Scholar 

  33. F.A. Gers, J. Schmidbuber, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN) (2000), pp. 189–194

  34. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014), pp. 1724–1734

  35. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 86, 2278 (1998)

    Article  Google Scholar 

  36. G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Neurocomputing 70, 489 (2006)

    Article  Google Scholar 

  37. A. Koutsoukas, K.J. Monaghan, X. Li, J. Huan, J. Cheminform 9, 42 (2017)

    Article  Google Scholar 

  38. L.N. Smith, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (2017), pp. 464–472

  39. I. Loshchilov, F. Hutter, arXiv preprint arXiv: http://arxiv.org/abs/1608.03983 (2016)

  40. X. Glorot, Y. Bengio, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (2010), pp. 249–256

  41. J. Duchi, E. Hazan, Y. Singer, J. Mach. Learn. Res. 12, 2121 (2011)

    MathSciNet  Google Scholar 

  42. D.P. Kingma and J.L. Ba, arXiv preprint arXiv: http://arxiv.org/abs/1412.6980 (2014)

  43. S. Ruder, arXiv preprint arXiv: http://arxiv.org/abs/1609.04747 (2016)

  44. M. Jarrah, N. Salim, Intl. J. Adv. Comput. Sci. Appl. 10, 155 (2019)

    Google Scholar 

  45. M.R. Vargas, C.E.M. dos Anjos, G.L.G. Bichara, A.G. Evsukoff, 2018 International Joint Conference on Neural Networks (IJCNN) (2018), pp. 1–8

  46. J. Wang, J. Wang, Neurocomputing 156, 68 (2015)

    Article  Google Scholar 

  47. K. Khare, O. Darekar, P. Gupta, V.Z. Attar, 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (2017), pp. 482–486

  48. K. Zhang, G. Zhong, J. Dong, S. Wang, Y. Wang, Procedia Comp. Sci. 147, 400 (2019)

    Article  Google Scholar 

  49. K. Pawar, R.S. Jalem, V. Tiwari, Emerging Trends in Expert Applications and Security (Springer, Singapore, 2019), pp. 493–503

    Book  Google Scholar 

  50. S. Mehtab, J. Sen and A. Dutta, arXiv preprint arXiv: http://arxiv.org/abs/2009.10819 (2020)

  51. M. Hiransha, E.A. Gopalakrishnan, V.K. Menon, K.P. Soman, Procedia Comp. Sci. 132, 1351 (2018)

    Article  Google Scholar 

  52. S. Selvin, R. Vinayakumar, E.A. Gopalakrishnan, V.K. Menon, K.P. Soman, 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2017), pp. 1643–1647

  53. Y. Wu, H. Tan, L. Qin, B. Ran, Z. Jiang, Transp. Res. Part C Emerg. Technol. 90, 166 (2018)

    Article  Google Scholar 

  54. D. Zhang, M.R. Kabuka, IET Intell. Transport Syst. 12, 578 (2018)

    Article  Google Scholar 

  55. M. Arif, G. Wang, S. Chen, IEEE Intl Conf on Dependable, Autonomic and Secure Computing—International Conference on Pervasive Intelligence and Computing—Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), (2018) pp. 681–688

  56. X. Dai, R. Fu, Y. Lin, L. Li, F.-Y. Wang, arXiv preprint arXiv: http://arxiv.org/abs/1707.03213 (2017)

  57. Y. Xiao, Y. Yin, Information 10, 105 (2019)

    Article  Google Scholar 

  58. H.-F. Yang, T.S. Dillon, Y.-P. Chen, IEEE Trans. Neural Netw. Learn. Sys. 28, 2371 (2016)

    Article  Google Scholar 

  59. L. Yu, J. Zhao, Y. Gao, W. Lin, 2019 International Conference on Robots & Intelligent System (ICRIS) (2019), pp. 466–469

  60. H. Yu, Z. Wu, S. Wang, Y. Wang, X. Ma, Sensors 17, 1501 (2017)

    Article  ADS  Google Scholar 

  61. J. Cifuentes, G. Marulanda, A. Bello, J. Reneses, Energies 13, 4215 (2020)

    Article  Google Scholar 

  62. S. Zhu, S. Heddam, S. Wu, J. Dai, B. Jia, Environ. Earth Sci. 78, 202 (2019)

    Article  Google Scholar 

  63. D. Mendes, J.A. Marengo, Theor. Appl. Climatol. 100, 413 (2010)

    Article  ADS  Google Scholar 

  64. M.-H. Yen, D.-H. Liu, Y.-C. Hsin, C.-E. Lin, C.-C. Chen, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  65. T. Ise, Y. Oba, Front. Robot. AI 6, 32 (2019)

    Article  ADS  Google Scholar 

  66. Y. Guo, X. Cao, B. Liu, K. Peng, Symmetry 12, 893 (2020)

    Article  Google Scholar 

  67. Y. Zhang, C. Zhang, Y. Zhao, S. Gao, J. Elec. Eng. 69, 148 (2018)

    Article  Google Scholar 

  68. A.G. Salman, Y. Heryadi, E. Abdurahman, W. Suparta, Procedia Comp. Sci. 135, 89 (2018)

    Article  Google Scholar 

  69. M. Elhoseiny, S. Huang, A. Elgammal, IEEE International Conference on Image Processing (ICIP) (2015), pp. 3349–3353

  70. S. Poornima, M. Pushpalatha, Atmosphere 10, 668 (2019)

    Article  ADS  Google Scholar 

  71. M.C.V. Ramírez, N.J. Ferreira, H.F.C. Velho, Weather Forecast. 21, 969 (2006)

    Article  ADS  Google Scholar 

  72. Z. Zhang, X. Pan, T. Jiang, B. Sui, C. Liu, W.J. Sun, J. Mar. Sci. Eng. 8, 249 (2006)

    Article  Google Scholar 

  73. L. Deng, APSIPA Trans. Signal Inf. Process. 5, 1 (2016)

    Article  Google Scholar 

  74. C.P. Lim, S.C. Woo, A.S. Loh, R. Osman, Proceedings of the First International Conference on Web Information Systems Engineering, vol. 1, (2000), pp. 419–423

  75. G.K. Venayagamoorthy, V. Moonasar, K. Sandrasegaran, Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG'98 (Cat.No.98EX214) (1998), pp. 29–32

  76. A. Nichie, G.A. Mills, Int J. Eng. Sci. Technol. 5, 1120 (2013)

    Google Scholar 

  77. C. Tian, J. Ma, C. Zhang, P. Zhan, Energies 11, 3493 (2018)

    Article  Google Scholar 

  78. H. Hamedmoghadam, N. Joorabloo and M. Jalili, arXiv preprint arXiv: http://arxiv.org/abs/1801.02148 (2018)

  79. J.T. Lalis, E. Maravillas, International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (2014), pp. 1–7

  80. J. Zheng, C. Xu, Z. Zhang, X. Li, 51st Annual Conference on Information Sciences and Systems (CISS) (2017), pp. 1–6

  81. D.C. Park, M.A. El-Sharkawi, R.J. Marks II., L.E. Atlas, M.J. Damborg, IEEE Trans. Power Syst. 6, 442 (1991)

    Article  ADS  Google Scholar 

  82. A. Azadeh, S.F. Ghaderi, S. Tarverdian, M. Saberi, Appl. Math. Comput. 186, 1731 (2007)

    MathSciNet  Google Scholar 

  83. R. Yokoyama, T. Wakui, R. Satake, Energy Convers. Manag. 50, 319 (2009)

    Article  Google Scholar 

  84. Y. Tao, K. Hsu, A. Ihler, X. Gao, S. Sorooshian, J. Hydrometeor. 19, 393 (2018)

    Article  ADS  Google Scholar 

  85. M. Nabipour, P. Nayyeri, H. Jabani, A. Mosavi, E. Salwana, S. Shahab, Entropy 22, 840 (2020)

    Article  ADS  Google Scholar 

  86. Z. Yudong, W. Learn, Expert Syst. Appl. 36, 8849 (2009)

    Article  Google Scholar 

  87. L. Chen, Z. Qiao, M. Wang, C. Wang, R. Du, H.E. Stanley, IEEE Access 6, 48625 (2018)

    Article  Google Scholar 

  88. G. Sermpinis, C. Dunis, J. Laws, C. Stasinakis, Decis. Support Syst. 54, 316 (2012)

    Article  Google Scholar 

  89. M. Vijh, D. Chandola, V.A. Tikkiwal, A. Kumar, Procedia Comp. Sci. 167, 599 (2020)

    Article  Google Scholar 

  90. J. Wang, J. Wang, W. Fang, H. Niu, Comput. Intell. Neurosci. 2016, 4742515 (2016)

    Google Scholar 

  91. M. Moustra, M. Avraamides, C. Christodoulou, Expert Sys. Appl. 38, 15032 (2011)

    Article  Google Scholar 

  92. J. González, W. Yu, L. Telesca, Multidiscip. Digit. Publ. Inst. Proc. 24, 22 (2019)

    Google Scholar 

  93. T. Kashiwao, K. Nakayama, S. Ando, K. Ikeda, M. Lee, A. Bahadori, Appl. Soft Comput. 56, 317 (2017)

    Article  Google Scholar 

  94. Z. Zhang, Y. Dong, Complexity 2020, 3536572 (2020)

    Google Scholar 

  95. M. Bilgili, B. Sahin, Energy Sources Part A Recov. Util. Environ. Effects 32, 60 (2009)

    Article  Google Scholar 

  96. K. Mohammadi, S. Shamshirband, S. Motamedi, D. Petković, R. Hashim, M. Gocic, Comput. Electron. Agric. 117, 214 (2015)

    Article  Google Scholar 

  97. I. Maqsood, M.R. Khan, A. Abraham, Weather Forecasting Models using Ensembles of Neural Networks, Intelligent Systems Design and Applications (Springer, Berlin, 2003), pp. 33–42

    Google Scholar 

  98. Q. Miao, B. Pan, H. Wang, K. Hsu, S. Sorooshian, Water 11, 977 (2019)

    Article  Google Scholar 

  99. Y. Wei, arXiv preprint arXiv: http://arxiv.org/abs/2101.10942 (2021)

  100. S. Mehtab, J. Sen and S. Dasgupta, arXiv preprint arXiv: http://arxiv.org/abs/2111.08011 (2021)

  101. A.A. Asanjan, T. Yang, K. Hsu, S. Sorooshian, J. Lin, Q. Peng, J. Geophy. Res. Atmos. 123, 12543 (2018)

    ADS  Google Scholar 

  102. Y. Tao, X. Hsu, X. Gao, S. Sorooshian, J. Hydrometeor. 19, 393 (2018)

    Article  ADS  Google Scholar 

  103. K.H. Shin, J.H. Jung, S.K. Seo, C.H. You, D.I. Lee, J. Lee, K.H. Chang, W.S. Jung and K. Kim, arXiv preprint arXiv: http://arxiv.org/abs/2101.09356 (2021)

  104. K.-H. Shin, W. Baek, K. Kim, C.-H. You, K.-H. Chang, D.-I. Lee, S.S. Yum, Physica A 523, 778 (2019)

    Article  Google Scholar 

  105. N. Chen, C. Xiong, W. Du, C. Wang, X. Lin, Z. Chen, Water 11, 1795 (2019)

    Article  Google Scholar 

  106. J. Du, Y. Liu, Y. Yu, W. Yan, Algorithms 10, 57 (2017)

    Article  Google Scholar 

  107. I.-H. Lee, J. Korean Phys. Soc. 76, 401 (2020)

    Article  ADS  Google Scholar 

  108. M.W. Cho, M.Y. Choi, J. Korean Phys. Soc. 77, 168 (2020)

    Article  ADS  Google Scholar 

  109. J. Choi, T.J. Kim, J. Lim, J. Park, Y. Ryou, J. Song, S. Yun, J. Korean Phys. Soc. 77, 1100 (2020)

    Article  ADS  Google Scholar 

  110. Y. Jeong et al., J. Korean Phys. Soc. 77, 1118 (2020)

    Article  ADS  Google Scholar 

  111. J.-W. Lee, J. Korean Phys. Soc. 77, 684 (2020)

    Article  Google Scholar 

  112. S. Moon, Y.H. Kim, J.-H. Kim, Y.-S. Kwak, J.-Y. Yoon, J. Korean Phys. Soc. 77, 1265 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This is supported by a Research Grant of Pukyong National University (2021 year).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyungsik Kim or Dong-In Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Testings 1 and 2

Appendix A: Testings 1 and 2

As the result of Ref. [103], testing 1 has the four nodes Tt−1, Tt, Ht−1, Ht, in the input layer and the one output node Tt+1in output layer. Testing 2 has the four input nodes Tt−1, Tt, Ht−1, Ht, and the one output node Ht+1. It is not known beforehand what values of learning rates are appropriate. However, we select the five learning rate lr = 0.1, 0.2, 0.3, 0.4, and 0.5 for the ANN and the DNN, while the learning rate values for LSTM and LSTM-PC are lr = 0.001, 0.003, 0.005, 0.007, and 0.009, for different training sizes over three runs, 2500, 5000, and 7500 epochs. Particularly, the predicted accuracies of ELM are also obtained by averaging the results over 2500, 5000, and 7500 epochs. Tables 5 and 6 (the same as Tables 1 and 2 in Ref. [103]) are, respectively, the result of the computer simulation performed for testings 1 and 2.

Table 5 Values of RMSE, MAPE, MAE, and Theil’s-U (unit: %) of ten metropolitan cities in four seasons in testing 1, where lr and L-PC denote the learning rate and the LSTM-PC, respectively
Table 6 Values of RMSE, MAPE, MAE, and Theil’s-U (unit: %) of ten metropolitan cities in four seasons in testing 2, where lr and L-PC denote the learning rate and the LSTM-PC, respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, KH., Jung, JW., Chang, KH. et al. Dynamical prediction of two meteorological factors using the deep neural network and the long short-term memory (ΙΙ). J. Korean Phys. Soc. 80, 1081–1097 (2022). https://doi.org/10.1007/s40042-022-00472-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00472-4

Keywords

Navigation