Skip to main content
Log in

Analysis of surface plasmon polariton conversion coefficient in slit-groove structure

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A method for the analysis of finding the conversion efficiency of the surface plasmon polariton in slit-groove structures is proposed and studied. The conversion efficiency of the surface plasmon polariton can be determined by measuring the intensities of light scattered at the slit and groove positions. To verify the usefulness of the proposed method, two rigorous simulations based on the finite-difference time-domain method were executed and the simulation results compared with previously reported data. One was to mimic the far-field imaging experiment in slit-groove structure and the other was to calculate the conversion coefficient directly in a single scattering structure. The SPP conversion efficiencies obtained from the two simulations were approximately 0.232 and 0.220 respectively, and these agreed with the reported data. The suggested method can be used regardless of the shape of the plasmon-generation structure; therefore, it is expected to be useful in a wide range of experiments with different scattering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998). https://doi.org/10.1038/35570

    Article  ADS  Google Scholar 

  2. H. Ditlbacher, J.R. Krenn, A. Hohenau, A. Leitner, F.R. Aussenegg, Efficiency of local light-plasmon coupling. Appl Phys Lett 83, 3665 (2003). https://doi.org/10.1063/1.1625107

    Article  ADS  Google Scholar 

  3. S.J. McNab, N. Moll, Y.A. Vlasov, Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Express 11, 2927 (2003). https://doi.org/10.1364/OE.11.002927

    Article  ADS  Google Scholar 

  4. A. Polman, Applied physics. Plasmon Appl Sci 322, 868 (2008). https://doi.org/10.1126/science.1163959

    Article  Google Scholar 

  5. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824 (2003). https://doi.org/10.1038/nature01937

    Article  ADS  Google Scholar 

  6. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006). https://doi.org/10.1126/science.1114849

    Article  ADS  Google Scholar 

  7. Raether H (1998) Surface plasmons on smooth surfaces. In: Surface plasmons on smooth and rough surfaces and on gratings. Springer, New York

  8. Y.Y. Teng, E.A. Stern, Plasma radiation from metal grating surfaces. Phys Rev Lett 19, 511 (1967). https://doi.org/10.1103/PhysRevLett.19.511

    Article  ADS  Google Scholar 

  9. A.L. Falk, F.H.L. Koppens, C.L. Yu, K. Kang, N. de Leon Snapp, A.V. Akimov, M. Jo, M.D. Lukin, H. Park, Near-field electrical detection of optical plasmons and single-plasmon sources. Nat Phys 5, 475 (2009). https://doi.org/10.1038/nphys1284

    Article  Google Scholar 

  10. L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julié, V. Mathet, M. Mortier, Near-field analysis of surface waves launched at nanoslit apertures. Phys Rev Lett 98, 153902 (2007). https://doi.org/10.1103/PhysRevLett.98.153902

    Article  ADS  Google Scholar 

  11. T. Iqbal, Coupling efficiency of surface plasmon polaritons: far- and near-field analyses. Plasmonics 12, 215 (2017). https://doi.org/10.1007/s11468-016-0252-z

    Article  Google Scholar 

  12. A. Sierant, B.R. Jany, T. Kawalec, Near-field characterization of surface plasmon polaritons on a nanofabricated transmission structure. Phys Rev B 103, 165433 (2021). https://doi.org/10.1103/PhysRevB.103.165433

    Article  ADS  Google Scholar 

  13. A. Taflove, S. C. Hagness, M. Piket-May, Computational electromagnetics: the finite-difference time-domain method (The Electrical Engineering Handbook, 2005)

  14. D. Pacifici, H.J. Lezec, H.A. Atwater, All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1, 402 (2007). https://doi.org/10.1038/nphoton.2007.95

    Article  ADS  Google Scholar 

  15. D. Morrill, D. Li, D. Pacifici, Measuring subwavelength spatial coherence with plasmonic interferometry. Nat Photonics 10, 681 (2016). https://doi.org/10.1038/nphoton.2016.162

    Article  ADS  Google Scholar 

  16. A. Neogi, C. Lee, H.O. Everitt, T. Kuroda, A. Tackeuchi, E. Yablonovitch, Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys Rev B 66, 153305 (2002). https://doi.org/10.1103/PhysRevB.66.153305

    Article  ADS  Google Scholar 

  17. B. Wang, P. Lalanne, How many surface plasmons are locally excited on the ridges of metallic lamellar gratings? Appl Phys Lett 96, 051115 (2010). https://doi.org/10.1063/1.3304021

    Article  ADS  Google Scholar 

  18. P. Lalanne, J.P. Hugonin, J.C. Rodier, Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95, 263902 (2005). https://doi.org/10.1103/PhysRevLett.95.263902

    Article  ADS  Google Scholar 

  19. P. Lalanne, J.P. Hugonin, J, C, Rodier, Approximate model for surface-plasmon generation at slit apertures. J Opt Soc Am A 23, 1608 (2006). https://doi.org/10.1364/JOSAA.23.001608

    Article  ADS  Google Scholar 

  20. R. Mehfuz, M.W. Maqsood, K.J. Chau, Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering. Opt Express 18, 18206 (2010). https://doi.org/10.1364/OE.18.018206

    Article  ADS  Google Scholar 

  21. H. Hu, X. Zeng, L. Wang, Y. Xu, G. Song, Q. Gan, Surface plasmon coupling efficiency from nanoslit apertures to metal-insulator-metal waveguides. Appl Phys Lett 101, 121112 (2012). https://doi.org/10.1063/1.4754137

    Article  ADS  Google Scholar 

  22. A.L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F.J. García-Vidal, J. Dintinger, T.W. Ebbesen, L. Martin-Moreno, J.R. Krenn, Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Opt Express 16, 3420 (2008). https://doi.org/10.1364/OE.16.003420

    Article  ADS  Google Scholar 

  23. J.D. Jackson, Classical electrodynamics (American Association of Physics Teachers, New York, 1999)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Chungnam National University.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonsang Park.

Ethics declarations

Conflict of interest

Not applicable.

Availability of data and material

Not applicable.

Code availability

Lumerical FDTD simulator.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y. Analysis of surface plasmon polariton conversion coefficient in slit-groove structure. J. Korean Phys. Soc. 80, 898–903 (2022). https://doi.org/10.1007/s40042-022-00419-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00419-9

Keywords

Navigation