Skip to main content
Log in

Azimuthal angle dependent dielectric function of SnS by ellipsometry

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Since α-SnS has optically strong anisotropic characteristics, a simple method to determine its crystal orientation is strongly needed in device engineering. In this report, by measuring dielectric function ε = ε1 + 2 of α-SnS in the 1–5 eV spectral region with the full azimuthal angle range, we could find a simple relationship between measured dielectric function values and the orientation of the α-SnS crystal axis. Therefore, during the device manufacturing process, one can use spectroscopic ellipsometry to quickly measure the dielectric response of the α-SnS region of the device to correctly orient the SnS along the preferred direction for the best performance of the device. We also performed the azimuthal angle-dependent analysis of the critical points (CP) analysis, which shows that the positions of CP energies are basically invariant, while their amplitudes and lineshapes strongly depend on the azimuthal angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Kim et al., J. Korean Phys. Soc. 72, 238 (2018)

    Article  ADS  Google Scholar 

  2. V.L. Le et al., AIP Adv. 10, 105003 (2020)

    Article  ADS  Google Scholar 

  3. X.A. Nguyen et al., J. Korean Phys. Soc. 77, 1178 (2020)

    Article  ADS  Google Scholar 

  4. D. Chua et al., Appl. Phys. Lett. 114, 213901 (2019)

    Article  ADS  Google Scholar 

  5. Y. Mao et al., J. Mater. Chem. A 7, 11265 (2019)

    Article  Google Scholar 

  6. B. Jalalian-Larki et al., Solid State Sci. 108, 106388 (2020)

    Article  Google Scholar 

  7. J. Ai et al., Appl. Surf. Sci. 496, 143631 (2019)

    Article  Google Scholar 

  8. H. Tang et al., Nanotechnology 31, 055501 (2020)

    Article  ADS  Google Scholar 

  9. Y.W. Jung et al., J. Korean Phys. Soc. 58, 1031–1034 (2020)

    Article  Google Scholar 

  10. P. Lefebvre et al., Phys. Rev. B. 35, 1230–1235 (1987)

    Article  ADS  Google Scholar 

  11. K. Chang et al., Nano Lett. 20, 6590 (2020)

    Article  ADS  Google Scholar 

  12. Y.I. Jhon et al., Adv. Opt. Mater. 7, 1801745 (2019)

    Article  Google Scholar 

  13. C. Zhang et al., Adv. Opt. Mater. 7, 1900631 (2019)

    Article  Google Scholar 

  14. X.A. Nguyen et al., Curr. Comput. Aided Drug Des. 11, 548 (2021)

    Google Scholar 

  15. Z.L. Bushell et al., Sci. Rep. 9, 1–8 (2019)

    Article  Google Scholar 

  16. S.U. Rehman, S.U. Rehman et al., J. Alloys Compd. 733, 22–32 (2018)

    Article  Google Scholar 

  17. C. Rana, C. Rana et al., J. Mater. Sci. Mater. Electron. 30, 21160–21169 (2019)

    Article  Google Scholar 

  18. T. Raadik et al., J. Phys. Chem. Solids. 74, 1683–1685 (2019)

    Article  ADS  Google Scholar 

  19. M. Losurdo et al., J. Nanopart. Res. 11, 1521–1554 (2009)

    Article  ADS  Google Scholar 

  20. S. Logothetidis et al., Phys. Rev. B. 31, 947–957 (1985)

    Article  ADS  Google Scholar 

  21. D.E. Aspnes et al., Phys. Rev. B. 27, 985 (1983)

    Article  ADS  Google Scholar 

  22. T.T. Ly et al., Phys. Chem. Chem. Phys. 19, 21648 (2017)

    Article  Google Scholar 

  23. T.M.H. Nguyen et al., J. Korean Phys. Soc. 78, 1095–1100 (2021)

    Article  ADS  Google Scholar 

  24. S. Logothetidis et al., Phys. Rev. B. 36, 7491 (1987)

    Article  ADS  Google Scholar 

  25. M. Cardona, Modulation spectroscopy. Vol 11 (1969)

  26. V.L. Le et al., J. Vac. Sci. Technol. B. 37, 052903 (2019)

    Article  Google Scholar 

  27. V.L. Le et al., Curr. Appl. Phys. 20, 232–236 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2020R1A2C1009041, NRF-2021R1A2C1005359, and NRF-2020R1A5A1016518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Dong Kim or Tae Jung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, X.A., Jung, Y.W., Kim, Y.D. et al. Azimuthal angle dependent dielectric function of SnS by ellipsometry. J. Korean Phys. Soc. 80, 59–62 (2022). https://doi.org/10.1007/s40042-021-00364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00364-z

Keywords

Navigation