Skip to main content
Log in

Structural, optical and electrical characterization of SnS nanomaterials grown at different temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnS nanocrystals were synthesized by simple wet chemical precipitation method. XRD results shows that the crystals are orthorhombic in phase. TEM images indicate that the grain sizes are almost spherical within the range 5 nm to 10 nm. Crystalline natures of the samples were confirmed by HRTEM. AFM analysis shows that surface roughness were found to be moderate. EDAX analysis revealed that the samples are maintained good stoichiometric ratio of Sn/S. From UV–Vis absorption spectra it is evident that SnS nanocrystals are good absorbing materials for solar light. PL spectra indicate a red shift of SnS nanocrystals occurred with increase growth temperature. Time correlated single photon counting (TCSPC) measurements revealed that PL decay life times are in the order of picosecond. The temperature varying SnS nanocrystals were p-type in nature with electrical conductivities were ranging from 0.020 to 0.037 Ohm−1 cm−1 and carrier concentrations were 7.05 × 1013 cm−3 to 1.54 × 1014 cm−3. Carriers drift mobilities were found to be high compared to the reported results. Therefore, SnS nanocrystals having low resistivity, higher drift mobility, higher carrier concentrations, small PL decay life time and high absorption coefficient exhibited excellent properties for the fabrication of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.L. Rogach, Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater. Sci. Eng. B 69–70, 435–440 (2000)

    Article  Google Scholar 

  2. Y. Lee, Y. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)

    Article  Google Scholar 

  3. X. Fang, U.K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi, D. Golberg, Multiangular branched ZnS nanostructures with needle-shaped tips: potential luminescent and field-emitter nanomaterial. J. Phys. Chem. C 112, 4735–4742 (2008)

    Article  CAS  Google Scholar 

  4. J. Yoon, S. Jo, I.S. Chun, I. Jung, H. Kim, M. Meitl, E. Menard, X. Li, J.J. Coleman, U. Paik, J.A. Rogers, GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010)

    Article  CAS  Google Scholar 

  5. N.K. Reddy, K.T.R. Reddy, Electrical properties of spray pyrolytic tin sulfide films. Solid State Electron 49, 902–906 (2005)

    Article  CAS  Google Scholar 

  6. H. Liu, Y. Liu, Z. Wang, P. He, Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology 21, 105707 (2010)

    Article  Google Scholar 

  7. S.F. Wang, W. Wang, W.K. Fong, Y. Yu, C. Surya, Tin compensation for the SnS based optoelectronic devices. Nature 7, 39704 (2017)

    CAS  Google Scholar 

  8. M. Calixto-Rodriguez, H. Martinez, A. Sanchez-Juarez, J. Campos-Alvarez, A. Tiburcio-Silver, M.E. Calixto, Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis. Thin Solid Films 517, 2497–2499 (2009)

    Article  CAS  Google Scholar 

  9. S.S. Hegde, A.G. Kunjomana, K.A. Chandrasekharan, K. Ramesh, M. Prashantha, Optical and electrical properties of SnS semiconductor crystals grown by physical vapour deposition technique. Phys. B 406, 1143–1148 (2011)

    Article  CAS  Google Scholar 

  10. M. Devika, K.T.R. Reddy, N.K. Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, K.R. Gunasekhar, Microstructure dependent physical properties of evaporated tin sulfide films. J. Appl. Phys. 100, 023518 (2006). https://doi.org/10.1063/1.2216790

    Article  CAS  Google Scholar 

  11. H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen, Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40, 591–595 (2005)

    Article  CAS  Google Scholar 

  12. S. Cheng, G. Conibeer, Physical properties of very thin films deposited by thermal evaporation. Thin Solid Films 520, 837–841 (2011)

    Article  CAS  Google Scholar 

  13. Y. Lei, Y. Xing, W. Fan, S. Songa, H. Zhang, Synthesis, characterization and optical property of flower-like indium tin sulfide nanostructures. Dalton Trans. 9, 1620–1623 (2009)

    Article  Google Scholar 

  14. F. Hua, C. Tana, H. Ye, X. Chena, G. Zhang, SnS monolayer as gas sensors: insights from a first-principles investigation. IEEE, 18th Intemational Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2017

  15. H. Karami, S. Babaei, Application of tin sulfide-tin dioxide nanocomposite as oxygen gas-sensing agent. Int. J. Electrochem. Sci. 8, 12078–12087 (2013)

    CAS  Google Scholar 

  16. Z. Deng, D. Cao, J. He, S. Lin, S.M. Lindsay, Y. Liu, Solution synthesis of ultrathin single crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 6, 6197–6207 (2012)

    Article  CAS  Google Scholar 

  17. J. Cai, Z. Li, P.K. Shen, Porous SnS nanorods/carbon hybrid materials as high stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces. 4, 4093–4098 (2012)

    Article  CAS  Google Scholar 

  18. D. Avellaneda, M.T.S. Nair, P.K. Nair, Photovoltaic structures using chemically deposited tin sulfide thin films. Thin Solid Films 517, 2500–2502 (2009)

    Article  CAS  Google Scholar 

  19. A. Muthuvinayagam, B. Viswanathan, Hydrothermal synthesis and LPG sensing ability of SnS Nanomaterial. Indian J. Chem. 54, 155–160 (2015)

    Google Scholar 

  20. L.J. Yang, R. Li, N. Huo, Y. Li, Z. Wei, J. Li, Gas-dependent photo response of SnS nanoparticles-based photo detectors. J. Mater. Chem. C 3, 1397–1402 (2015)

    Article  Google Scholar 

  21. J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 6(1), 55–64 (2013)

    Article  CAS  Google Scholar 

  22. M. Salavati-Niasari, D. Ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J Alloys Compd. 492, 570–575 (2010)

    Article  CAS  Google Scholar 

  23. W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854 (2012)

    Article  CAS  Google Scholar 

  24. G.H. Yue, Y.D. Lin, X. Wen, L.S. Wang, Y.Z. Chen, D.L. Peng, Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 106, 87–91 (2012)

    Article  CAS  Google Scholar 

  25. M. Ganchev, P. Vitanov, M. Sendova-Vassileva, G. Popkirov, H. Dikov, Properties of SnS thin films grown by physical vapour deposition. J. Phys. 682, 012019 (2016)

    Google Scholar 

  26. A. Ceylan, Synthesis of SnS thin films via high vacuum sulfidation of sputtered Sn thin films. Mater. Lett. 201, 194–197 (2017)

    Article  CAS  Google Scholar 

  27. B. Thangaraju, P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. J. Phys. D 33, 1054 (2000)

    Article  CAS  Google Scholar 

  28. S. Suresh, Wet chemical synthesis of tin sulfide nanoparticles and its characterization. Int. J. Phys. Sci. 9(17), 380–385 (2014)

    Google Scholar 

  29. S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Synthesis and characterization of different morphological SnS nanomaterials. Adv. Nat. Sci. 5, 045010 (2014)

    Google Scholar 

  30. G.H. Yue, D.L. Peng, P.X. Yan, L.S. Wang, W. Wang, X.H. Luo, Structure and optical properties of SnS thin film prepared by pulse electro deposition. J Alloys Compd. 468, 254–257 (2009)

    Article  CAS  Google Scholar 

  31. P. Jain, P. Arun, Parameters influencing the optical properties of SnS thin films. J. Semicond. 34, 9 (2013)

    Article  Google Scholar 

  32. T.S. Reddy, M.C.S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6, 95680–95692 (2016)

    Article  CAS  Google Scholar 

  33. T. Raadik, M. Grossberg, J. Raudoja, R. Traksmaa, J. Krustok, Temperature-dependent photoreflectance of SnS crystals. J. Phys. Chem. Solids 74, 1683–1685 (2013)

    Article  CAS  Google Scholar 

  34. Z. Huda, T. Zaharinie, I.H.S.C. Metselaar, S. Ibrahim, G.J. Min, Kinetics of grain growth in 718 Ni-based superalloy. Arch. Metall. Mater. 59, 847–852 (2014)

    Article  CAS  Google Scholar 

  35. Y. Zhao, Z. Zhang, H. Dang, W. Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater. Sci. Eng. B 113, 175–178 (2004)

    Article  Google Scholar 

  36. M.M. Nassary, Temperature dependence of the electrical conductivity: hall effect and thermoelectric power of SnS single crystals. J. Alloy. Compd. 398, 21–25 (2005)

    Article  CAS  Google Scholar 

  37. G.S. Paul, P. Agarwal, Evolution of SnS nanostructures-their structural. Mater. Chem. Phys. 136, 673–679 (2012)

    Article  CAS  Google Scholar 

  38. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater. 1, 1116–1125 (2011)

    Article  CAS  Google Scholar 

  39. N.K. Reddy, K.T.R. Reddy, Preparation and characterisation of sprayed tin sulphide films grown at different precursor concentrations. Mater. Chem. Phys. 102, 13–18 (2007)

    Article  CAS  Google Scholar 

  40. T.H. Patel, R. Vaidya, S.G. Patel, Growth and transport properties of tin monosulphoselenide single crystals. J. Cryst. Growth 253, 52–58 (2003)

    Article  CAS  Google Scholar 

  41. H. Noguchi, A. Setiyadi, H. Tanamura, T. Nagatomo, O. Omoto, Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol. Energy Mater. Sol. Cells 35, 325 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to University Grant Commission (UGC) and Department of Science and Technology (DST) for their constant financial support for providing various instrumental facilities to Physics of Vidyasagar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Rana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, C., Saha, S. Structural, optical and electrical characterization of SnS nanomaterials grown at different temperatures. J Mater Sci: Mater Electron 30, 21160–21169 (2019). https://doi.org/10.1007/s10854-019-02489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02489-1

Navigation