Skip to main content
Log in

On holographic Wilsonian renormalization group of massive scalar theory with its self-interactions in AdS

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Holographic model of massive scalar field with its self-interaction \(\lambda \phi ^n\) in AdS space is able to give a logarithmic scale dependence to marginal multi-trace deformation couplings on its dual conformal field theory, where \(\lambda \) is the self-interaction coupling of the scalar field, \(\phi \), and n is an integral number. In arXiv:1501.06664, the authors realize this feature by looking at bulk scalar solutions near AdS boundary imposing a specific boundary condition between the coefficients of non-normalizable and normalizable modes of the scalar field excitations. We study the same holographic model to see scale dependence of marginal deformations on the dual conformal field theory by employing completely different method: holographic Wilsonian renormalization group. We solve Hamilton–Jacobi equation derived from the holographic model of massive scalar with \(\lambda \phi ^n\) interaction and obtain the solution of marginal multi-trace deformations up to the leading order in \(\lambda \). It turns out that the solution of marginal multi-trace deformation also presents logarithmic behavior in energy scale near UV region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that in [6], the \(K=-\frac{1}{(-2\nu )^n}\), where \(\nu =\frac{d}{2}-\Delta \). This is due to the different definitions of multi-trace couplings.

  2. We note that in [11], the authors employ holographic Wilsonian renormalization group to study classically marginal deformations. They investigate marginally relevant or irrelevant cases in quantum level. We also note that in [17], the authors discuss holographic Wilsonian renormalization group for massive scalar theory with self-interaction, whose form is quite general, which is given by \(\sum\nolimits _{n=3}^\infty \lambda _n \phi ^n\). They discuss general features of the holographic Wilsonian renormalization group and its similarity with Callan–Symansik equation. However, they do not give detailed discussion on the reproduction of logarithmic behaviors of marginal deformations on the boundary conformal field theory.

  3. For \( m \ge 2 \), the most general form of Hamilton–Jacobi equation is given by

    $$\begin{aligned}& \delta ^{(d)}\left( \sum\limits ^{m}_{B=1} \overrightarrow {{p_{B}}}\right) \partial _\epsilon [ \sqrt{\gamma }D^{(m)}(p_1,\ldots ,p_{n'};\epsilon )] \nonumber \\& = -\int d^dp \left. \frac{(m+1)}{\sqrt{g}g^{rr}}J(\epsilon ,-p)\sqrt{\gamma }D^{(m+1)}(p_1,\ldots ,p_{m+1},p)\delta ^{(d)}\left( \sum\limits ^{m}_{B=1} \overrightarrow {{p_{B}}}\right) \right. \nonumber \\& - \frac{\gamma }{2\sqrt{g}g^{rr}}\sum\limits ^{m}_{m'=2}m'(m+2-m') \mathcal Per \left\{ D^{(m')}\left( p_1,\ldots ,p_{m'-1},-\sum\limits ^{m'-1}_{B=1}p_B;\epsilon \right) D^{(m+2-m')}\left( p_{m'},\ldots ,p_{m},\sum\limits ^{m'-1}_{A=1}p_A;\epsilon \right) \right\} \delta ^{(d)}\left( \sum\limits ^{m}_{B=1} \overrightarrow {{p_{B}}}\right) \nonumber \\& - \frac{1}{2}\sqrt{g}(-g^{ij}p_{1i}p_{2j}+m^2)\delta ^{(d)}( {p_1}+ {p_2})\delta _{m,2} + \left. \sqrt{g}\ \frac{\lambda }{n}\delta _{n,m}(2\pi )^{d(1-\frac{n}{2})}\delta ^{(d)}\left( \sum\limits ^m_{B=1} \overrightarrow {{p_{B}}}\right) . \right. \end{aligned}$$
    (24)

References

  1. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183–386 (2000). https://doi.org/10.1016/S0370-1573(99)00083-6. arXiv:hep-th/9905111[hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231–252 (1998). https://doi.org/10.1023/A:1026654312961. arXiv:hep-th/9711200[hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Balasubramanian, P. Kraus, A.E. Lawrence, Phys. Rev. D (1999). https://doi.org/10.1103/PhysRevD.59.046003. arXiv:hep-th/9805171[hep-th]

    Article  Google Scholar 

  4. V. Balasubramanian, P. Kraus, A.E. Lawrence, S.P. Trivedi, Phys. Rev. D (1999). https://doi.org/10.1103/PhysRevD.59.104021. arXiv:hep-th/9808017[hep-th]

    Article  Google Scholar 

  5. E. Witten, arXiv:hep-th/0112258[hep-th]

  6. O. Aharony, G. Gur-Ari, N. Klinghoffer, JHEP 1505, 031 (2015). https://doi.org/10.1007/JHEP05(2015)031. arXiv:1501.06664[hep-th]

    Article  ADS  Google Scholar 

  7. I. Heemskerk, J. Polchinski, JHEP 1106, 031 (2011). https://doi.org/10.1007/JHEP06(2011)031. arXiv:1010.1264 [hep-th]

    Article  ADS  Google Scholar 

  8. T. Faulkner, H. Liu, M. Rangamani, JHEP 1108, 051 (2011). https://doi.org/10.1007/JHEP08(2011)051. arXiv:1010.4036 [hep-th]

    Article  ADS  Google Scholar 

  9. C. Park, arXiv:2102.01829[hep-th]

  10. C. Park , J. Hun Lee, Phys. Rev. D 101, no.8, 086008 (2020) https://doi.org/10.1103/PhysRevD.101.086008arXiv:1910.05741 [hep-th]

  11. C. Park, https://doi.org/10.22661/AAPPSBL.2018.28.4.64arXiv:1812.10203[hep-th]

  12. J.H. Oh, D.P. Jatkar, JHEP 1211, 144 (2012). https://doi.org/10.1007/JHEP11(2012)144. arXiv:1209.2242 [hep-th]

    Article  ADS  Google Scholar 

  13. D.P. Jatkar, J.H. Oh, JHEP 1310, 170 (2013). https://doi.org/10.1007/JHEP10(2013)170. arXiv:1305.2008 [hep-th]

    Article  ADS  Google Scholar 

  14. J.H. Oh, Int. J. Mod. Phys. A 29, 1450082 (2014). https://doi.org/10.1142/S0217751X14500821. arXiv:1310.0588 [hep-th]

    Article  ADS  Google Scholar 

  15. J. H. Oh, Phys. Rev. D 94, no. 10, 105020 (2016) https://doi.org/10.1103/PhysRevD.94.105020arXiv:1504.03046[hep-th]

  16. S. p. Moon, Int. J. Mod. Phys. A 33, no. 16, 1850091 (2018) https://doi.org/10.1142/S0217751X18500914arXiv:1702.00117[hep-th]

  17. S. Grozdanov, JHEP 06, 079 (2012). https://doi.org/10.1007/JHEP06(2012)079. arXiv:1112.3356 [hep-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.H.O thank his W.J. and Y.J. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1C1B1010107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hyuk Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Oh, JH. On holographic Wilsonian renormalization group of massive scalar theory with its self-interactions in AdS. J. Korean Phys. Soc. 80, 30–36 (2022). https://doi.org/10.1007/s40042-021-00357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00357-y

Keywords

Navigation