Skip to main content
Log in

Dynamic response of a MRE sandwich structure under a non-homogenous magnetic field

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A viscoelastic layer improves the response of a sandwich structure under dynamic loading. Through integration of a magneto-sensitive elastomer core, the adaptability of the structure over a wider frequency can be achieved. The current work focuses on the influence of a non-homogeneous magnetic field on a magnetorheological elastomer (MRE)-based sandwich cantilever beam. The dynamic response of the structure is measured using the impact hammer test as per the ASTM E-756-05 standard. Results revealed that the fundamental natural frequency of the MRE sandwich beam is a function of the intensity and the location of the non-homogenous magnetic field. The fundamental natural frequency is reduced as the magnitude of the magnetic flux density is increased or the magnetized region is shifted towards the fixed end. This unique response of the MRE sandwich beam under a non-homogenous magnetic field is an exception to the usual stiffness-enhancing behavior of a MRE. To study this disparity, we independently investigated the contributions by the localized stiffness enhancement and the deflection due to magnetic pull. The effect of the localized overall stiffness enhancement on the overall stiffness of the sandwich beam is investigated using modal analysis in ANSYS to analyze the variation in the fundamental frequency. The contribution due to magnetic pull is studied by performing an experimental modal analysis on an equivalent ferromagnetic cantilever beam deflected under the influence of a magnetic field. By comparing the experimental results and the corresponding investigation on the influencing factors, we confirmed that magnetic pull induced under non-homogenous magnetic field is an important parameter that significantly contributes to the dynamic response of a MRE sandwich beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.C. Nakra, Sadhana 25(3), 277–289 (2000)

    Article  Google Scholar 

  2. B.C. Nakra, J. Sound. Vib. 211(3), 449–465 (1998)

    Article  ADS  Google Scholar 

  3. G.G. Wren, V.K. Kinra, ASTM STP 1169, 282–315 (1992)

    Google Scholar 

  4. B.C. Nakara, PINSA 67(4 & 5), 461–478 (2001)

    Google Scholar 

  5. M.D. Rao, J. Sound. Vib. 262, 457–474 (2004)

    Article  ADS  Google Scholar 

  6. M. Lokander, B. Stenberg, Polym. Test. 22, 245–251 (2003)

    Article  Google Scholar 

  7. N. Caterino, M.B. Azmoodeh, A. Occhiuzzi, Smart Mater. Struct. 23, 117005 (2014)

    Article  ADS  Google Scholar 

  8. H. Bose, P. Roder, J. Phys. Conf. Ser. 149, 012090 (2009)

    Article  Google Scholar 

  9. Y. Xu, X. Gong, S. Xuan, W. Zhange, Y. Fan, Soft Matter 7, 5246–5254 (2011)

    Article  ADS  Google Scholar 

  10. J. Kaleta, M. Krolewicz, D. Lewandowski, Smart Mater. Struct. 20, 085006 (2011)

    Article  ADS  Google Scholar 

  11. C. Collette, C. Kroll, G. Saive, V. Guillemier, M. Avraam, J. Intell. Mater. Syst. Struct. 21, 1463–1467 (2010)

    Article  Google Scholar 

  12. W. Li, X. Zhange, H. Du, J. Intell. Mater. Syst. Struct. 23(9), 1041–1048 (2012)

    Article  Google Scholar 

  13. P. Melenev, R. Raikher, G. Stepanov, V. Rusakov, L. Polygalova, J. Intell. Mater. Syst. Struct. 22, 531–538 (2011)

    Article  Google Scholar 

  14. Y. Han, W. Hong, L.E. Faidley, J. Intell. Mater. Syst. Struct. 50, 2281–2288 (2013)

    Google Scholar 

  15. J.T. Zhu, Z.D. Xu, Y.Q. Guo, J. Mater. Civ. Eng. 25, 1762–1771 (2013)

    Article  Google Scholar 

  16. G.V. Stepanov, A.V. Chertovich, E.Y. Kramarenko, J. Magn. Magn. Mater. 324, 3448–3451 (2012)

    Article  ADS  Google Scholar 

  17. O. Padalka, H.J. Song, N.M. Wereley, J.A. Filer, R.C. Bell, IEEE Trans. Magn. 46, 2275–2277 (2010)

    Article  ADS  Google Scholar 

  18. H. Song, O. Padalka, N. Wereley, R. Bell, Proc. 17th AIAA/ASME/AHS Adaptive Struc-tures Conf., Palm Springs, CA, May 4–7 (2009)

  19. Y. Fan, X. Gong, S. Xuan, W. Zhang, J. Zheng, W. Jiang, Smart Mater. Struct. 20, 035007 (2011)

    Article  ADS  Google Scholar 

  20. S. Hegde, R.P. Umanath, K.V. Gangadharan, Int. Conf. Adv. Manuf. Mater. Eng. 5, 2301–2309 (2014)

    Google Scholar 

  21. A. Boczkowska, S.F. Awietjan, J. Mater. Sci. 44, 4104–4111 (2009)

    Article  ADS  Google Scholar 

  22. T.F. Tian, X.Z. Zhang, W.H. Li, G. Alici, J. Ding, J. Phys. Conf. Ser. 412, 012038 (2013)

    Article  Google Scholar 

  23. S. Hegde, K. Kiran, K.V. Gangadharan, J. Cent, South Univ. Technol. 21, 2612–2619 (2014)

    Article  Google Scholar 

  24. X. Qiao, X. Lu, W. Li, J. Chen, X. Gong, T. Yang, W. Li, K. Sun, X. Chen, Smart Mater. Struct. 21, 115028 (2012)

    Article  ADS  Google Scholar 

  25. L. Ge, X. Gong, Y. Fan, S. Xuan, Smart Mater. Struct. 22, 115029 (2013)

    Article  ADS  Google Scholar 

  26. R. Li, L.Z. Sun, Appl. Phys. Lett. 99, 131912 (2011)

    Article  ADS  Google Scholar 

  27. L. Chen, X.L. Gong, W.H. Li, Polym. Test. 27, 340–345 (2008)

    Article  Google Scholar 

  28. P. Zając, J. Kaleta, D. Lewandowski, A. Gasperowicz, Smart Mater. Struct. 19, 045014 (2010)

    Article  ADS  Google Scholar 

  29. S.A. Demchuck, V.A. Kuzmin, J. Eng. Phys. Thermophys. 75(2), 396–400 (2002)

    Article  Google Scholar 

  30. R. Lakes, Viscoelastic Materials (Cambridge University Press, 2009)

    Book  MATH  Google Scholar 

  31. P. Leopoldes, C. Barres, J.L. Leblanc, P. Georget, J. Appl. Polym. Sci. 91, 577–588 (2004)

    Article  Google Scholar 

  32. J. Fuente, M.S. Garcia, M.L. Cerrada, J. Appl. Polym. Sci. 88, 1705–1712 (2003)

    Article  Google Scholar 

  33. R.G. Stacer, C. Hübner, D.M. Husband, Rubber Chem. Technol. 63, 488–502 (1990)

    Article  Google Scholar 

  34. L. Xiushou et al., Rheol. Acta 51, 37–50 (2012)

    Article  Google Scholar 

  35. Y. Wang et al., Polym. Test. 25, 262–267 (2006)

    Article  Google Scholar 

  36. T.L. Sun, X.L. Gong, W.Q. Jiang, J.F. Li, Z.B. Xu, W.H. Li, Polym. Test. 27, 520–526 (2008)

    Article  Google Scholar 

  37. L. Chen, X. Gong, W. Jiang, J. Yao, H. Deng, W. Li, J. Mater. Sci. 42, 5483–5489 (2007)

    Article  ADS  Google Scholar 

  38. G. Hu, M. Guo, W. Li, H. Du, G. Allici, Smart Mater. Struct. 20, 127001 (2011)

    Article  ADS  Google Scholar 

  39. C. Yang, J. Fu, M. Yu, X. Zheng, B. Ju, J. Intell. Mater. Syst. Struct. 26(10), 1290–1300 (2015)

    Article  Google Scholar 

  40. S. Sun, H. Deng, Y. Yang, W. Li, H. Du, G. Alici, J. Intell. Mater. Syst. Struct. 26(14), 1757–1763 (2014)

    Article  Google Scholar 

  41. G. Du, X. Chen, Measurement 45, 54–58 (2012)

    Article  ADS  Google Scholar 

  42. N. Zeerouni, S. Aguib, A. Nour, T. Djedid, A. Nedjar, Vibroeng. Procedia 18, 73–78 (2018)

    Article  Google Scholar 

  43. Z.G. Ying, Y.Q. Ni, R.H. Huan, J. Vib. Acoust. 140(5), 051017 (2018)

    Article  Google Scholar 

  44. E. Yarali et al., Compos. Struct. 254, 112881 (2020)

    Article  Google Scholar 

  45. M.R. Rokn-Abadi, P. Shahali, H. Haddadpour, J. Intell. Mater. Syst. Struct. 31, 7 (2020)

    Article  Google Scholar 

  46. A. Settet, S. Aguib, A. Nour, N. Zerrouni, Mechanika 25(4), 320–325 (2019)

    Article  Google Scholar 

  47. B. Nayak, R. Kishor, S.S. Gautam, Vibroeng. Procedia 21, 20–25 (2018)

    Article  Google Scholar 

  48. F.S. Eloy et al., Compos. Struct. 209, 242–257 (2019)

    Article  Google Scholar 

  49. R. Selvaraj, M. Ramamoorthy, Mech. Based Des. Struct. Mach., 1–13 (2020). https://doi.org/10.1080/15397734.2020.1778487

  50. R. Selvaraj, M. Ramamoorthy, J. Sandw. Struct. Mater. 23(5), 1784–1807 (2021)

    Article  Google Scholar 

  51. B. Nayak, S.K. Dwivedy, K. Murthy, Eur. J. Mech. A. Solids. 47, 143–155 (2012)

    Article  Google Scholar 

  52. B. Nayak, S.K. Dwivedy, K. Murthy, Int J. Nonlinear Mech. 47(5), 448–460 (2014)

    Article  Google Scholar 

  53. R. Rajpal, K.P. Lijesh, K.V. Gangadharan, J. Braz. Soc. Mech. Sci. 40, 569 (2018)

    Article  Google Scholar 

  54. F.S. Eloy et al., Eng. Struct. 176, 231–242 (2018)

    Article  Google Scholar 

  55. V. Lara-Prieto, R. Parkin, M. Jackson, V. Silberschmidt, Z. Kęsy, Smart Mater. Struct. 19, 015005 (2009)

    Article  ADS  Google Scholar 

  56. J. Kozlowska, A. Boczkowska, A. Czulak, B. Przybyszewski, K. Holeczek, R. Stanik, M. Gude, Smart Mater. Struct. 25, 035025 (2016)

    Article  ADS  Google Scholar 

  57. L.C. Davis, J. Appl. Phys. 85(6), 3348–3351 (1999)

    Article  ADS  Google Scholar 

  58. U.R. Poojary, S. Hegde, K.V. Gangadharan, Korea. Aust. Rheol. J. 28, 301–313 (2016)

    Article  Google Scholar 

  59. ASTM E 756-05 (2017)

  60. T.R. Lin, N.H. Faragand, J. Pan, Appl. Acoust. 66, 829–844 (2005)

    Article  Google Scholar 

  61. V. Lara-Prieto, R. Parkin, M. Jackson, V. Silberschmidt, Z. Kesy, Smart Mater. Struct. 19, 015005 (2010)

    Article  ADS  Google Scholar 

  62. L.E. Ooi, Z.M. Ripin, Mater. Des. 32, 1880–1887 (2011)

    Article  Google Scholar 

  63. K.G. McConnel, Vibration Testing Theory and Practice (Wiley, 1995)

    Google Scholar 

  64. S.S. Rao, Mechanical Vibrations (4th Edition, Pearson Prentice Hall, 2004)

  65. M. Jafari, H. Djojodihardjo, K.A. Ahmad, Appl. Mech. Mater. 629, 407–413 (2014)

    Article  Google Scholar 

  66. B. Omidvar, J. Eng. Mech 123(6), 629–632 (1997)

    Google Scholar 

  67. R. Adhikari, R. Kaundal, A. Sarkar, P. Rana, A.K. Das, Am. J. Phys. 80, 225 (2012)

    Article  ADS  Google Scholar 

  68. S. Pradhan, P.R. Chaudhri, Appl. Opt. 54(20), 6269–6276 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from SOLVE: The Virtual Lab @ NITK (Grant number: No.F.16-35/2009-DL Ministry of Human Resources Development) (http://www.solve.nitk.ac.in) and experimental support provided by the Centre for System Design (CSD): A Centre of Excellence at NITK-Surathkal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umanath R. Poojary.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poojary, U.R., Hegde, S., Kiran, K. et al. Dynamic response of a MRE sandwich structure under a non-homogenous magnetic field. J. Korean Phys. Soc. 79, 864–873 (2021). https://doi.org/10.1007/s40042-021-00281-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00281-1

Keywords

Navigation