Skip to main content
Log in

Effective cross section of fuzzy dark matter halos

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We numerically study the movement of two colliding fuzzy dark matter solitons without explicit self-interaction and find the effective cross section of dissipative change in velocity. The cross section turns out to be inversely proportional to the velocity cubed, and we present its analytic interpretation. Using the result we roughly estimate spatial offsets during head-on collisions of two fuzzy dark matter halos, which can be related to the spatial offsets between stars and dark matter in collisions of some galaxy clusters. We also show that the gravitational cooling plays an important role during the collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Thus, \(\int d^3 \mathbf{{x}}\, |\psi |^2\) in the code space is no longer fixed to be unity in general.

  2. Hence \(M_\mathrm{tot}=2M\) in our setup.

  3. For each moving soliton, one may introduce an additional velocity-dependent phase factor [18] and we shall put the relative phase factor \(\delta =0\) for the simplicity of our analysis (see [18] for the details).

  4. Labeling each soliton could be ambiguous since the collision is solely described by field profiles of our Schrödinger–Poisson system. However this ambiguity may be lifted by considering slightly different masses, e.g. \(M_L > M_R\), and tracking for instance the larger/smaller density peak as the soliton L/R.

  5. We would like to thank the referee for clarification of the argument below.

  6. The parameters AB are related to \(\alpha ,\beta\) by \(A=f_0^3 \, \alpha\) and \(B=f_0^2\, \beta\).

  7. \(q_{\text {src}}\ll 1\) corresponds to the quantum regime in which \(q_{\text {src}}\) dependence in C can be ignored. See Figure 2 of Ref. [5] in this regard.

  8. Interestingly, with \(G(q)=A q^3\), \(\sigma _\mathrm{eff}/M\) is independent of the soliton mass M.

  9. The approximation here breaks down when \({|v-v_I|}/{v}\) becomes \(\mathcal{O}(1)\). In this regime, one has in general further enhancement of the offset ratio.

References

  1. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462, 563–575 (1996)

    Article  ADS  Google Scholar 

  2. W.J.G. de Blok, A. Bosma, S.S. McGaugh, astro-ph/0212102 (2002)

  3. A. Tasitsiomi, Int. J. Mod. Phy. D 12, 1157 (2003)

    Article  ADS  Google Scholar 

  4. W. Hu, R. Barkana, A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000)

    Article  ADS  Google Scholar 

  5. L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95(4), 043541 (2017)

    Article  ADS  Google Scholar 

  6. J.W. Lee, EPJ Web Conf. 168, 06005 (2018). [arXiv:1704.05057]

    Article  Google Scholar 

  7. D. Harvey, R. Massey, T. Kitching, A. Taylor, E. Tittley, Science 347, 1462–1465 (2015)

    Article  ADS  Google Scholar 

  8. S. Tulin, H.B. Yu, Phys. Rept. 730, 1–57 (2018)

    Article  ADS  Google Scholar 

  9. J. W. Lee, S. L., D. Choi, hep-ph:0805.3827 (2008)

  10. A. Paredes, H. Michinel, Phys. Dark Univ. 12, 50–55 (2016)

    Article  Google Scholar 

  11. F.S. Guzmán, J.A. González, J.P. Cruz-Pérez, Phys. Rev. D 93(10), 103535 (2016)

    Article  ADS  Google Scholar 

  12. F.S. Guzman, L.A. Urena-Lopez, Astrophys. J. 645, 814 (2006)

    Article  ADS  Google Scholar 

  13. D. Bak, S. Kim, H. Min, J.P. Song, J. Korean Phys. Soc. 74(8), 756 (2019)

    Article  ADS  Google Scholar 

  14. N.A.Bahcall, [arXiv:astro-ph/9611148 [astro-ph]]

  15. L. Diósi, Phys. Lett. A 105, 199 (1984)

    Article  ADS  Google Scholar 

  16. I.M. Moroz, R. Penrose, P. Tod, Class. Quant. Grav. 15, 2733 (1998)

    Article  ADS  Google Scholar 

  17. H.Y. Schive, T. Chiueh, T. Broadhurst, Nat. Phys. 10, 496 (2014)

    Article  Google Scholar 

  18. F. Edwards, E. Kendall, S. Hotchkiss, R. Easther, JCAP 1810, 027 (2018)

    Article  ADS  Google Scholar 

  19. P. Salzman: “Investigation of the Time Dependent Schrödinger- Newton Equation”, Ph.D. thesis, Univ. of California at Davis, 2005

  20. L. Lancaster, C. Giovanetti, P. Mocz, Y. Kahn, M. Lisanti, D.N. Spergel, JCAP 01, 001 (2020)

    ADS  Google Scholar 

  21. F.S. Guzmán, A.A. Avilez, Phys. Rev. D 97(11), 116003 (2018)

    Article  ADS  Google Scholar 

  22. F. S. Guzman, J. A. Gonzalez, I. Alvarez-Rios, [arXiv:1907.07990 [astro-ph.CO]]

  23. S. Chandrasekhar, Astrophys. J. 97, 255 (1943)

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Clowe et al., Astrophys. J. 648, L109 (2006)

    Article  ADS  Google Scholar 

  25. A. Mahdavi et al., Astrophys. J. 668, 806 (2007)

    Article  ADS  Google Scholar 

  26. B. Binggeli, A. Sandage, M. Tarenghi, Astron. J. 89, 64–82 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D Bak was supported in part by the 2021 Research Fund of the University of Seoul. J. W. Lee was supported in part by NRF-2020R1F1A1061160. S. Park was supported in part by NRF Grant 2020R1A2B5B01001473, by Basic Science Research Program through National Research Foundation funded by the Ministry of Education (2018R1A6A1A06024977).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Weon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, D., Lee, JW. & Park, S. Effective cross section of fuzzy dark matter halos. J. Korean Phys. Soc. 79, 582–588 (2021). https://doi.org/10.1007/s40042-021-00263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00263-3

Keywords

Navigation