Skip to main content
Log in

A percolation model for the metal-insulator transition in pyrite Ni(S,Se)\(_2\)

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A percolation model is proposed to explain the metal-insulator transition (MIT) in the pyrite-structured nickel dichalcogenide NiS\(_{2-x}\)Se\(_x\). In our model, we assume that a NiX\(_6\) octahedron (X=S or Se) connected with Se-Se dimers to another is conductive while one with S-Se/Se-S dimers is probabilistically conductive and one with S-S dimers is insulating. Then, the insulator-to-metal phase transition occurs at a percolation threshold of the conductive dimers network. We have performed a Monte-Carlo simulation to obtain the appropriate condition to explain the critical Se concentration \(x_c\simeq \)0.55 in the MIT. The simulation result indicates that S-Se/Se-S dimers are conductive with a probability of 0.33. The physical meaning of our toy model is discussed with respect to the electronic structure of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.J. Bouchard, J.L. Gillson, H.S. Jarrett, Mater. Res. Bull. 8, 489 (1973)

    Article  Google Scholar 

  2. H.S. Jarrett et al., Mater. Res. Bull. 8, 877 (1973)

    Article  Google Scholar 

  3. J.A. Wilson, The Metallic and Nonmetallic States of Matter (Taylor & Francis, London, 1985), p. 215

    Google Scholar 

  4. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    Article  ADS  Google Scholar 

  5. A. Husmann, D.S. Jin, Y.V. Zastavker, T.F. Rosenbaum, X. Yao, J.M. Honig, Science 274, 1874 (1996)

    Article  ADS  Google Scholar 

  6. G. Han, S. Choi, H. Cho, B. Sohn, J.-G. Park, C. Kim, Phys. Rev. B 98, 1 (2018)

    Google Scholar 

  7. R.L. Kautz, M.S. Dresselhaus, D. Adler, A. Linz, Phys. Rev. B 6, 2078 (1972)

    Article  ADS  Google Scholar 

  8. A.K. Mabatah, E.J. Yoffa, P.C. Eklund, M.S. Dresselhaus, D. Adler, Phys. Rev. B 21, 1676 (1980)

    Article  ADS  Google Scholar 

  9. A.Y. Matsuura, Z.-X. Shen, D.S. Dessau, C.-H. Park, T. Thio, J.W. Bennett, O. Jepsen, Phys. Rev. B 53, R7584 (1996)

    Article  ADS  Google Scholar 

  10. K. Mamiya, T. Mizokawa, A. Fujimori, Phys. Rev. B 58, 9611 (1998)

    Article  ADS  Google Scholar 

  11. J. Jeong, K.J. Park, E.-J. Cho, H.-J. Noh, S.B. Kim, H.-D. Kim, J. Korean Phys. Soc. 72, 111 (2018)

    Article  ADS  Google Scholar 

  12. J. Jeong, D.-H. Jeong, H.-J. Noh, New Phys. Sae Mulli 69596, 1 (2019)

    Google Scholar 

  13. A. Perucchi, C. Marini, M. Valentini, P. Postorino, R. Sopracase, P. Dore, P. Hansmann, O. Jepsen, G. Sangiovanni, A. Toschi, K. Held, D. Topwal, D.D. Sarma, S. Lupi, Phys. Rev. B 80, 12 (2009)

    Article  Google Scholar 

  14. J. Kuneš, L. Baldassarre, B. Schächner, K. Rabia, C.A. Kuntscher, Dm.M. Korotin, V.I. Anisimov, J.A. McLeod, E.Z. Kurmaev, A. Moewes, , Phys. Rev. B 81, 035122 (2010)

    Article  ADS  Google Scholar 

  15. C.-Y. Moon, H. Kang, B.G. Jang, J.H. Shim, Phys. Rev. B 92, 1 (2015)

    Google Scholar 

  16. K. Momma, F. Izumi, J. Appl. Cryst. 44, 1272 (2011)

    Article  Google Scholar 

  17. H.C. Xu, Y. Zhang, M. Xu, R. Peng, X.P. Shen, V.N. Strocov, M. Shi, M. Kobayashi, T. Schmitt, B.P. Xie, D.L. Feng, Phys. Rev. Lett. 112, 1 (2014)

    Google Scholar 

  18. B.I. Shklovskii, A.L. Efros, Springer Series in Solid-State Sciences vol. 45. Chap. 5. Percolation Theory. p 94 (1984)

  19. X. Xu, J. Wang, J.-P. Lv, Y. Deng, Front. Phys. 9, 113 (2014)

    Article  ADS  Google Scholar 

  20. C. de las Heras, F. Agullo Rueda, J. Phys. Condens. Matter. 12, 5317 (2000)

    Article  ADS  Google Scholar 

  21. M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Nature 399, 560 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korean Government (Grant No. 2019R111A3A01058188). HJN thanks S. Youn for helpful discussions about the Raman spectra analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jin Noh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, HJ. A percolation model for the metal-insulator transition in pyrite Ni(S,Se)\(_2\). J. Korean Phys. Soc. 78, 1191–1195 (2021). https://doi.org/10.1007/s40042-021-00165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00165-4

Keywords

Navigation