Skip to main content
Log in

Solvent mixture formulation for orthogonal inkjet processing and uniform pixel patterning of quantum dot light-emitting diode

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Quantum dot light-emitting diode (QLED) can be directly patterned for pixel array by solution processing, while the limitation of resolution and device stability exists unless a proper solvent system and multilayer design are established. With a small-sized nozzle inkjet printing process, solvent formulation effects on the morphology and precision of printing for the quantum dot layer were investigated. Drop formation as well as ink spreading and wetting behavior on the non-crosslinked organic hole-transporting polymer were optimized with a non-erosive solvent formulation composed of octane and cyclohexane. While the ink composition formed low-contact angle droplet on the surface and was not completely ideal for the defectless pixelating process of high-resolution inkjet, its controllability of wetting at a small-scale nozzle, uniform drying, and orthogonal characteristics with an effective hole transport layer resulted in a high-performance green inkjet QLED with 6.13 cd/A at 19,550 nits highly bright region. This amounted to about 50% of efficiency performance compared to an identical device prepared with spin-coating, but one of the best green inkjet QLED properties reported with less than 120-μm sub-pixel pitch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.M. Haverinen, R.A. Myllylä, G.E. Jabbour, Appl. Phys. Lett. 94, 073108 (2009)

    Article  ADS  Google Scholar 

  2. H.M. Haverinen, R.A. Myllylä, G.E. Jabbour, J. Disp. Technol. 6, 87 (2010)

    Article  ADS  Google Scholar 

  3. B.H. Kim, M.S. Onses, J.B. Lim, S. Nam, N. Oh, H. Kim, K.J. Yu, J.W. Lee, J.-H. Kim, S.-K. Kang, C.H. Lee, J. Lee, J.H. Shin, N.H. Kim, C. Leal, M. Shim, J.A. Rogers, Nano Lett. 15, 969 (2015)

    Article  ADS  Google Scholar 

  4. J. Han, D. Ko, M. Park, J. Roh, H. Jung, Y. Lee, Y. Kwon, J. Sohn, W.K. Bae, B.D. Chin, C. Lee, J. SID 24, 545 (2016)

    Google Scholar 

  5. C. Jiang, Mu.J. Lan, Z. Zou, Z. He, L. Zhong, M. Wang, J. Xu, J. Wang, Y. Peng, Cao Sci. China Chem. 60, 1349 (2017)

    Article  Google Scholar 

  6. X. Li, Q. Lin, J. Song, H. Shen, H. Zhang, L.S. Li, X. Li, Z. Du, Adv. Opt. Mater. 8, 1901145 (2020)

    Article  Google Scholar 

  7. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J.R. Manders, J. Xue, P.H. Holloway, L. Qian, Nat. Photon. 9, 259 (2015)

    Article  ADS  Google Scholar 

  8. L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, X. Liu, A.C.S. Appl, Mater. Interfaces 9, 38755 (2017)

    Article  Google Scholar 

  9. Y.-H. Won, O. Cho, T. Kim, D.-Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, E. Jang, Nature 575, 634 (2019)

    Article  ADS  Google Scholar 

  10. C. Pu, X. Dai, Y. Shu, M. Zhu, Y. Deng, Y. Jin, X. Peng, Nat. Comm. 11, 937 (2020)

    Article  ADS  Google Scholar 

  11. M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi, C. Park, S.J. Kim, S.I. Chae, T.-H. Kim, J.H. Kim, T. Hyeon, D.-H. Kim, Nat. Comm. 6, 7149 (2015)

    Article  ADS  Google Scholar 

  12. J. Lim, B.G. Jeong, M. Park, J.K. Kim, J.M. Pietryga, Y.-S. Park, V.I. Klimov, C. Lee, D.C. Lee, W.K. Bae, Adv. Mater. 26, 8034 (2014)

    Article  Google Scholar 

  13. Y. Zou, M. Ban, W. Cui, Q. Huang, C. Wu, J. Liu, H. Wu, T. Song, B. Sun, Adv. Funct. Mater. 27, 1603325 (2017)

    Article  Google Scholar 

  14. S.A. Park, W.H. Jung, J.Y. Yoo, C.W. Lee, J.S. Kim, J.G. Kim, B.D. Chin, Org. Electron. 87, 105955 (2020)

    Article  Google Scholar 

  15. C. Xiang, L. Wu, Z. Lu, M. Li, Y. Wen, Y. Yang, W. Liu, T. Zhang, W. Cao, S.-W. Tsang, B. Shan, X. Yan, L. Qian, Nat. Comm. 11, 1646 (2020)

    Article  ADS  Google Scholar 

  16. C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. Peng, Y. Cao, A.C.S. Appl, Mater. Interfaces 8, 26162 (2016)

    Article  Google Scholar 

  17. Y. Liu, F. Li, Z. Xu, C. Zheng, T. Guo, X. Xie, L. Qian, D. Fu, X. Yan, A.C.S. Appl, Mater. Interfaces 9, 25506 (2017)

    Article  Google Scholar 

  18. P. Yang, L. Zhang, D.J. Kang, R. Strahl, T. Kraus, Adv. Opt. Mater. 8, 1901429 (2020)

    Article  Google Scholar 

  19. S. Chen, W. Cao, T. Liu, S.-W. Tsang, Y. Yang, X. Yan, L. Qian, Nat. Commun. 10, 765 (2019)

    Article  ADS  Google Scholar 

  20. L. Wang, J. Pan, J. Qian, W. Lei, Y. Wu, W. Zhang, D.K. Gotoc, J. Chen, J. Mater. Chem. C 6, 8099 (2018)

    Article  Google Scholar 

  21. Y.-F. Liu, M.-H. Tsai, Y.-F. Pai, W.-S. Hwang, Appl. Phys. A 111, 509 (2013)

    Article  ADS  Google Scholar 

  22. Y. Zhong, H. Fang, Q. Ma, X. Dong, J. Fluid Mech 845, 378 (2018)

    Article  ADS  Google Scholar 

  23. R. Macy, J. Chem. Educ. 12, 573 (1935)

    Article  Google Scholar 

  24. D. Derby, Engineering 1, 113 (2015)

    Article  Google Scholar 

  25. Y. Liu, B. Derby, Phys. Fluids 31, 032004 (2019)

    Article  ADS  Google Scholar 

  26. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (2017)

    Article  ADS  Google Scholar 

  27. H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2016)

    Article  Google Scholar 

  28. J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Adv. Funct. Mater. 18, 229 (2008)

    Article  Google Scholar 

  29. D. Soltman, V. Subramanian, Langmuir 24, 2224 (2008)

    Article  Google Scholar 

  30. H.H. Fong, A. Papadimitratos, G.G. Malliaras, Appl. Phys. Lett. 89, 172116 (2006)

    Article  ADS  Google Scholar 

  31. G. Zaiats, S. Ikeda, S. Kinge, P.V. Kamat, A.C.S. Appl, Mater. Interfaces 9, 30741 (2017)

    Article  Google Scholar 

  32. J. Liang, L. Ying, W. Yang, J. Peng, Y. Cao J. Mater. Chem. C 5, 5096 (2017)

    Article  Google Scholar 

  33. K.P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarza, P.H. Holloway, Nanoscale 9, 14451 (2017)

    Article  Google Scholar 

  34. M.K. Choi, J. Yang, D.C. Kim, Z. Dai, J. Kim, H. Seung, V.S. Kale, S.J. Sung, C.R. Park, N. Lu, T. Hyeon, D.-H. Kim, Adv. Mater. 30, 1703279 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dankook University Research Fund (award no. R201800356) in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Doo Chin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 975 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kang, Y.J. & Chin, B.D. Solvent mixture formulation for orthogonal inkjet processing and uniform pixel patterning of quantum dot light-emitting diode. J. Korean Phys. Soc. 78, 1116–1127 (2021). https://doi.org/10.1007/s40042-021-00153-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00153-8

Keywords

Navigation