Skip to main content
Log in

Design and growth of InAsP metamorphic buffers for InGaAs thermophotovoltaic cells

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The structural and optical properties of InAsxP1-x metamorphic buffers grown by metal–organic chemical vapor deposition on InP (100) substrates have been investigated. High-resolution X-ray reciprocal space mapping around the (115) InP lattice point reveals that the strain relaxations of the InAsxP1-x with x = 0.5, 0.55, and 0.7 are 98%, 92%, and 96%, while the lateral correlation lengths are 17, 62, and 28 nm, respectively. The optical bandgap energy of the InAsP derived from photoreflectance (PR) measurements decreases from 0.819 to 0.621 eV at 300 K when increasing As composition from x = 0.5 to 0.7. The bowing parameter for the optical bandgap of the InAsP is increased with increasing As composition, which is attributable to the increased spontaneous CuPt-type ordering in InAsP. It is found from the excitation power-dependent PR measurement that the InAsxP1-x layers have different degrees of the bandgap redshift due to the reduced thermal conductivity caused by crystal imperfections generated during the strain relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.G. Mauk, V.M. Andreev, Semicond. Sci. Technol. 18, S191 (2003)

    Article  ADS  Google Scholar 

  2. A.W. Bett, O.V. Sulima, Semicond. Sci. Technol. 18, S184 (2003)

    Article  ADS  Google Scholar 

  3. C.A. Wang et al., Appl. Phys. Lett. 75, 1305 (1999)

    Article  ADS  Google Scholar 

  4. A. Krier et al., Infrared Phys. Technol. 73, 126 (2015)

    Article  ADS  Google Scholar 

  5. M.K. Hudait et al., J. Appl. Phys. 95, 3952 (2004)

    Article  ADS  Google Scholar 

  6. M.K. Hudait, Y. Lin, S.A. Ringel, J. Appl. Phys. 105, 061643 (2009)

    Article  ADS  Google Scholar 

  7. P.M.J. Marée et al., J. Appl. Phys. 62, 4413 (1987)

    Article  ADS  Google Scholar 

  8. R. Kumar et al., Appl. Surf. Sci. 357, 922 (2015)

    Article  ADS  Google Scholar 

  9. R.M. France et al., J. Appl. Phys. 111, 103528 (2012)

    Article  ADS  Google Scholar 

  10. J. Tersoff, Appl. Phys. Lett. 62, 693 (1993)

    Article  ADS  Google Scholar 

  11. Y. Zhu et al., J. Appl. Phys. 112, 024306 (2012)

    Article  ADS  Google Scholar 

  12. M. Kaya, Y. Atici, Superlattices Microstruct. 35, 35 (2004)

    Article  ADS  Google Scholar 

  13. T. Metzger et al., Philos. Magn. A. 77, 1013 (1998)

    Article  ADS  Google Scholar 

  14. A. Gangopadhyay et al., Acta Mater. 162, 103 (2019)

    Article  ADS  Google Scholar 

  15. J.E. Ayers, J. Cryst. Growth 135, 71 (1994)

    Article  ADS  Google Scholar 

  16. D.E. Aspnes, Surf. Sci. 37, 418 (1973)

    Article  ADS  Google Scholar 

  17. E. Iliopoulos et al., Appl. Phys. Lett. 92, 191907 (2008)

    Article  ADS  Google Scholar 

  18. D.H. Jaw, G.S. Chen, G.B. Stringfellow, Appl. Phys. Lett. 59, 114 (1991)

    Article  ADS  Google Scholar 

  19. S.H. Wei, A. Zunger, Phys. Rev. B 49, 14337 (1994)

    Article  ADS  Google Scholar 

  20. K. Yamaguchi et al., Mater. Trans. 35, 596 (1994)

    Article  Google Scholar 

  21. Y. Liu et al., Phys. Status Solid. Rapid Res. Lett. 14, 2000108 (2020)

    Article  ADS  Google Scholar 

  22. J. Guo et al., Chem Phys Lett. 576, 26 (2013)

    Article  ADS  Google Scholar 

  23. P. Lockhart, P.S. Dutta, P. Han, X.-C. Zhang, Appl. Phys. Lett. 92, 011102 (2008)

    Article  ADS  Google Scholar 

  24. A. Lavasani, D. Bulmash, S.D. Sarma, Phys. Rev. B 99, 085104 (2019)

    Article  ADS  Google Scholar 

  25. S. Adachi, J. Appl. Phys. 54, 1844 (1983)

    Article  ADS  Google Scholar 

  26. J. Zou et al., J. Appl. Phys. 92, 2534 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20163030013380), the Nano Material Fundamental Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018M3A7B4069994), and the characterization platform for advanced materials funded by Korea Research Institute of Standards and Science (KRISS–2021–GP2021-0011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Jun Lee or Eui-Tae Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T., Kim, Y., Park, S. et al. Design and growth of InAsP metamorphic buffers for InGaAs thermophotovoltaic cells. J. Korean Phys. Soc. 78, 1147–1152 (2021). https://doi.org/10.1007/s40042-021-00152-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00152-9

Keywords

Navigation