Skip to main content
Log in

A quest for effective polarizability as a function of the radii

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Lately we have proposed an atomic polarizability model, viz. \(\alpha \propto \left({r}^{3}/{Z}_{\mathrm{eff}}{e}^{2}\right)\), through an empirical approach. As the results obtained using the model were remarkable, we have tried to explore the efficacy of this polarizability model by using four different types of radii for 96 atoms invoking a regression analysis. Further, we have performed a study on molecules by employing additivity property. Although the results are similar in the case of atoms, two of the four radii-based polarizability sets perform better when molecules are considered. In addition, the molecular polarizability is computed for a variety of anaesthetics due to its significance in biochemical interactions. A significant correlation is obtained between the computed and the published data, corroborating the efficacy of polarizability model in the prediction of biological mechanisms. The polarizability model is revealed to be conceptually rigorous even when different types of radii are used, so it can be satisfactorily employed for real-field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K.D. Bonin, M.A. Kadar-Kallen, J. Mod. Phys. B 8, 3313 (1994)

    Article  ADS  Google Scholar 

  2. J.A. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B 43, 202001 (2010)

    Article  ADS  Google Scholar 

  3. J.K. Nagle, J. Am. Chem. Soc. 11, 4741 (1990)

    Article  Google Scholar 

  4. D.C. Ghosh, K. Gupta, J. Theor. Comput. Chem. 5, 895 (2006)

    Article  Google Scholar 

  5. J. Wang, P. Cieplak, J. Li, T. Hou, R. Luo, Y. Duan, J. Phys. Chem. B 115, 3091 (2011)

    Article  Google Scholar 

  6. H. Tandon, T. Chakraborty, V. Suhag, Int. J. Quant. Struct. Prop. Relationsh. 4, 99 (2019)

    Article  Google Scholar 

  7. H. Tandon, T. Chakraborty, V. Suhag, J. Math. Chem. 57, 2142 (2019)

    Article  MathSciNet  Google Scholar 

  8. J.N. Orce, Int. J. Mod. Phys. E 29, 2030002 (2020)

    Article  ADS  Google Scholar 

  9. T.P. Rupasinghe, K.M. Hutchins, B.S. Bandaranayake, S. Ghorai, C. Karunatilake, D.K. Bučar, D.C. Swenson, M.A. Arnold, L.R. MacGillivray, A.V. Tivanski, J. Am. Chem. Soc. 137, 12768 (2015)

    Article  Google Scholar 

  10. C. Hansch, W.E. Steinmetz, A.J. Leo, S.B. Mekapati, A. Kurup, D. Hoekman, J. Chem. Inform. Comput. Sci. 43, 120 (2003)

    Article  Google Scholar 

  11. H. Tandon, P. Ranjan, T. Chakraborty, V. Suhag, Mol. Divers. 25, 249 (2021)

    Article  Google Scholar 

  12. S. Choudhary, P. Ranjan, T. Chakraborty, J. Chem. Res. 44, 227 (2020)

    Article  Google Scholar 

  13. J.C. Slater, J. Chem. Phys. 41, 3199 (1964)

    Article  ADS  Google Scholar 

  14. J.C. Slater, Quantum Theory of Molecules and Solids: Symmetry and Energy Bands in Crystals, vol. 2 (McGraw-Hill, New York, 1963).

    Google Scholar 

  15. D.C. Ghosh, R. Biswas, Int. J. Mol. Sci. 3, 87 (2002)

    Article  Google Scholar 

  16. M.V. Putz, N. Russo, E. Sicilia, J. Phys. Chem. A 107, 5461 (2003)

    Article  Google Scholar 

  17. P. Pyykkö, S. Riedel, M. Patzschke, Chem. Eur. J. 11, 3511 (2005)

    Article  Google Scholar 

  18. H. Tandon, T. Chakraborty, V. Suhag, Mol. Phys. 119, e1820594 (2021)

    Article  ADS  Google Scholar 

  19. P. Szarek, A. Chlebicki, W. Grochala, J. Phys. Chem. A 123, 682 (2019)

    Article  Google Scholar 

  20. M. Rahm, R. Hoffmann, N.W. Ashcroft, Chem. Eur. J. 22, 14625 (2016)

    Article  Google Scholar 

  21. J. Gebhardt, A.M. Rappe, Comput. Phys. Commun. 237, 238 (2019)

    Article  ADS  Google Scholar 

  22. J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity (Addison-Wesley, New York, 1993).

    Google Scholar 

  23. P. Politzer, P. Jin, J.S. Murray, J. Chem. Phys. 117, 8197 (2002)

    Article  ADS  Google Scholar 

  24. H. Tandon, P. Ranjan, T. Chakraborty, V. Suhag, J. Math. Chem. 58, 1025 (2020)

    Article  Google Scholar 

  25. D. Agin, L. Hersh, D. Holtzman, Proc. Natl. Acad. Sci. USA. 53, 952 (1965)

    Article  ADS  Google Scholar 

  26. M.J. Kamlet, R.M. Doherty, M.H. Abraham, R.W. Taft, Quant. Struct. Act. Relatsh. 7, 71 (1988)

    Article  Google Scholar 

  27. R. Hahin, A. Kondratiev, J. Membr. Biol. 180, 137 (2001)

    Article  Google Scholar 

  28. R. Wien, D.F.J. Mason, Br. J. Pharmacol. Chemother. 8, 306 (1953)

    Article  Google Scholar 

  29. K. Nishimura, M. Ohoka, T. Fujita, Pestic. Biochem. Physiol. 28, 257 (1987)

    Article  Google Scholar 

  30. A.G. Mercader, A.B. Pomilio, Eur. J. Med. Chem. 45, 1724 (2010)

    Article  Google Scholar 

  31. L. Bober, P. Kawczak, T. Baczek, Lett. Drug Des. Discov. 9, 595 (2012)

    Article  Google Scholar 

  32. P. Kawczak, L. Bober, T. Baczek, Curr. Pharm. Anal. 10, 255 (2014)

    Article  Google Scholar 

  33. K. Roy, S. Kar, R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment (Academic press, New York, 2015).

    Google Scholar 

  34. H. Tandon, T. Chakraborty, V. Suhag, J. Mol. Model. 25, 303 (2019)

    Article  Google Scholar 

  35. D.S. Sabirov, R.G. Bulgakov, Fuller. Nanotub. Carbon Nanostruct. 18, 455 (2010)

    Article  ADS  Google Scholar 

  36. W. Carruthers, I. Coldham, Modern Methods of Organic Synthesis (Cambridge University Press, Cambridge, 2004).

    Book  Google Scholar 

  37. T.H. Lowry, K.S. Richardson, Mechanism and Theory in Organic Chemistry (Harper & Row, New York, 1987).

    Google Scholar 

  38. F.A. Carey, R.J. Sundberg, Advanced Organic Chemistry Part a: Structure and Mechanisms (Springer, New York, 2007).

    Google Scholar 

  39. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)

    Article  ADS  Google Scholar 

  40. E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967)

    Article  ADS  Google Scholar 

  41. J.P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973)

    Article  ADS  Google Scholar 

  42. B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans. (2008). https://doi.org/10.1039/b801115j

  43. P. Schwerdtfeger, J.K. Nagle, Mol. Phys. 117, 1200 (2019)

    Article  ADS  Google Scholar 

  44. I.K. Dmitrieva, G.I. Plindov, Phys. Scr. 27, 402 (1983)

    Article  ADS  Google Scholar 

  45. P. Politzer, J.S. Murray, M.E. Grice, T. Brinck, S. Ranganathan, J. Chem. Phys. 95, 6699 (1991)

    Article  ADS  Google Scholar 

  46. B. Fricke, J. Chem. Phys. 84, 862 (1986)

    Article  ADS  Google Scholar 

  47. I.K. Dmitrieva, G.I. Plindov, J. Appl. Spectrosc. 44, 4 (1986)

    Article  ADS  Google Scholar 

  48. H.J. Bohórquez, R.J. Boyd, Chem. Phys. Lett. 480, 127 (2009)

    Article  ADS  Google Scholar 

  49. R.L. DeKock, J.R. Strikwerda, E.X. Yu, Chem. Phys. Lett. 547, 120 (2012)

    Article  ADS  Google Scholar 

  50. U. Hohm, A.J. Thakkar, J. Phys. Chem. A 116, 697 (2012)

    Article  Google Scholar 

  51. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database, Version 5.6.1 (National Institute of Standards and Technology, Gaithersburg, MD, 2018). https://physics.nist.gov/asd. Accessed 10 Dec 2020

  52. P. Politzer, J.S. Murray, F.A. Bulat, J. Mol. Model. 16, 1731 (2010)

    Article  Google Scholar 

  53. Y.K. Kang, M.S. Jhon, Theor. Chim. Acta 61, 41 (1982)

    Article  Google Scholar 

  54. K.J. Miller, J. Am. Chem. Soc. 112, 8533 (1990)

    Article  Google Scholar 

  55. P.T. van Duijnen, M. Swart, J. Phys. Chem. A 102, 2399 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Tanmoy Chakraborty is thankful to Sharda University, and Dr. Hiteshi Tandon and Dr. Shalini Chaudhary are thankful to Manipal University Jaipur, for providing computational resources and a research facility.

Author information

Authors and Affiliations

Authors

Contributions

SC: resources, formal analysis, writing—original draft. HT: conceptualization, methodology, formal analysis, investigation, validation, writing—original draft, visualization. TC: conceptualization, supervision, writing—review and editing.

Corresponding authors

Correspondence to Hiteshi Tandon or Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Tandon, H. & Chakraborty, T. A quest for effective polarizability as a function of the radii. J. Korean Phys. Soc. 78, 1101–1108 (2021). https://doi.org/10.1007/s40042-021-00130-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00130-1

Keywords

Navigation